GABA(B) (gamma-aminobutyric acid type B) receptors are important for keeping neuronal excitability under control. Cloned GABA(B) receptors do not show the expected pharmacological diversity of native receptors and it is unknown whether they contribute to pre- as well as postsynaptic functions. Here, we demonstrate that Balb/c mice lacking the GABA(B(1)) subunit are viable, exhibit spontaneous seizures, hyperalgesia, hyperlocomotor activity, and memory impairment. Upon GABA(B) agonist application, null mutant mice show neither the typical muscle relaxation, hypothermia, or delta EEG waves. These behavioral findings are paralleled by a loss of all biochemical and electrophysiological GABA(B) responses in null mutant mice. This demonstrates that GABA(B(1)) is an essential component of pre- and postsynaptic GABA(B) receptors and casts doubt on the existence of proposed receptor subtypes.
To study the role of mGlu7 receptors (mGluR7), we used homologous recombination to generate mice lacking this metabotropic receptor subtype (mGluR7 Ϫ/Ϫ ). After the serendipitous discovery of a sensory stimulus-evoked epileptic phenotype, we tested two convulsant drugs, pentylenetetrazole (PTZ) and bicuculline. In animals aged 12 weeks and older, subthreshold doses of these drugs induced seizures in mGluR7 Ϫ/Ϫ , but not in mGluR7 ϩ/Ϫ , mice. PTZ-induced seizures were inhibited by three standard anticonvulsant drugs, but not by the group III selective mGluR agonist (R,S)-4-phosphonophenylglycine (PPG). Consistent with the lack of signs of epileptic activity in the absence of specific stimuli, mGluR7 Ϫ/Ϫ mice showed no major changes in synaptic properties in two slice preparations. However, slightly increased excitability was evident in hippocampal slices. In addition, there was slower recovery from frequency facilitation in cortical slices, suggesting a role for mGluR7 as a frequency-dependent regulator in presynaptic terminals. Our findings suggest that mGluR7 receptors have a unique role in regulating neuronal excitability and that these receptors may be a novel target for the development of anticonvulsant drugs.
gamma-Hydroxybutyrate (GHB), a metabolite of gamma-aminobutyric acid (GABA), is proposed to function as a neurotransmitter or neuromodulator. gamma-Hydroxybutyrate and its prodrug, gamma-butyrolactone (GBL), recently received increased public attention as they emerged as popular drugs of abuse. The actions of GHB/GBL are believed to be mediated by GABAB and/or specific GHB receptors, the latter corresponding to high-affinity [3H]GHB-binding sites coupled to G-proteins. To investigate the contribution of GABAB receptors to GHB actions we studied the effects of GHB in GABAB(1)-/- mice, which lack functional GABAB receptors. Autoradiography reveals a similar spatial distribution of [3H]GHB-binding sites in brains of GABAB(1)-/- and wild-type mice. The maximal number of binding sites and the KD values for the putative GHB antagonist [3H]6,7,8,9-tetrahydro-5-hydroxy-5H-benzocyclohept-6-ylidene acetic acid (NCS-382) appear unchanged in GABAB(1)-/- compared with wild-type mice, demonstrating that GHB- are distinct from GABAB-binding sites. In the presence of the GABAB receptor positive modulator 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol GHB induced functional GTPgamma[35S] responses in brain membrane preparations from wild-type but not GABAB(1)-/- mice. The GTPgamma[35S] responses in wild-type mice were blocked by the GABAB antagonist [3-[[1-(S)-(3,4dichlorophenyl)ethyl]amino]-2-(S)-hydroxy-propyl]-cyclohexylmethyl phosphinic acid hydrochloride (CGP54626) but not by NCS-382. Altogether, these findings suggest that the GHB-induced GTPgamma[35S] responses are mediated by GABAB receptors. Following GHB or GBL application, GABAB(1)-/- mice showed neither the hypolocomotion, hypothermia, increase in striatal dopamine synthesis nor electroencephalogram delta-wave induction seen in wild-type mice. It, therefore, appears that all studied GHB effects are GABAB receptor dependent. The molecular nature and the signalling properties of the specific [3H]GHB-binding sites remain elusive.
Anticonvulsant properties of CGP 37849 and CGP 39551, two novel phosphono-amino acids which are competitive NMDA receptor antagonists, were examined in rodents. At optimal pretreatment times CGP 37849 suppressed electroshock-induced seizures in mice and rats with ED50s ranging from 8 to 22 mg/kg after oral administration, and 0.4 to 2.4 mg/kg after i.v. and i.p. injection. Relative to CGP 37849, CGP 39551 was more potent after p.o. (ED50 3.7-8.1 mg/kg), and less potent after i.v. or i.p. treatment (ED50 2.7-8.7 mg/kg). Following oral treatment, the duration of action of CGP 37849 was about 8 h, while CGP 39551 still showed good activity after 24 h (ED50 8.7 mg/kg, mouse; 21 mg/kg, rat). Both compounds were anticonvulsant at doses below those at which overt behavioural side effects were apparent. CGP 39551 delayed the development of kindling in rats at doses of 10 mg/kg p.o. and above, and showed weak anticonvulsant activity against pentylenetetrazol-evoked seizures. CGP 37849 and CGP 39551 are the first competitive NMDA antagonists to show oral anti-convulsant properties in a therapeutically-useful dose-range, and hence are interesting candidates for novel antiepileptic therapy in man.
The influence of antiepileptics on the evolution of rat amygdaloid kindling was studied. Under placebo conditions clonic convulsions and a spike-wave EEG pattern developed. Diazepam, clonazepam, clobazam and phenobarbital were most effective in suppressing the evolution of kindling; the effects of valproate sodium, ethosuximide and acetazolamide were somewhat less pronounced in this respect. Carbamazepine, oxcarbazepine and phenytoin, on the other hand, enhanced kindling development, i.e. the increase in duration of after-discharge was faster than in the placebo group. The results indicate that under the above experimental conditions drugs with no anti-absence component can be distinguished from those with an anti-absence component. The mechanism of action underlying the observed effects is not yet known; the hypothesis that under special conditions protective inhibitory neuronal activity can develop to absence type seizures is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.