Cloud computing is an on-demand model that computes shared and dynamic resource availability in a remote or independent location. Cloud computing provides many services online to clients in a pay-as-you-go manner. Nowadays, many organizations use cloud computing techniques with the prime motive that cost can be reduced, and resources are dynamically allocated. Performance evaluation and measurement approaches for cloud computing help the cloud services consumer to evaluate their cloud system based on performance attributes. Although the researchers have proposed many techniques and approaches in this direction in past decades, none of them has attained widespread industrial benefit. This paper proposes a novel quality evaluation methodology named Stochastic Neural Net (SNN) to evaluate the cloud quality of Infrastructure as a Service (IaaS). This model deeply measures the performance by considering every activity of the IaaS system. Based on their characteristics, these works suggest key QoS factors for individual parts and activities. The individual QoS metric makes the SNN methodology acquire accurate results regarding performance measurement. The performance evaluation result can be used to improve the cloud computing system. The proposed model is compared with other standard models. The experimental comparison shows that the proposed model is more efficient than other standard models.
Cloud computing is a computing hypothesis, where a huge group of systems is linked together in private, public, or hybrid network, to offer dynamically amendable infrastructure for data storage, file storage, and application. With this emerging technology, application hosting, delivery, content storage, and reduced computation cost are achieved, and it acts as an essential module for the backbone of the Internet of Things (IoT). The efficiency of cloud service providers (CSP) could be improved by considering significant factors such as availability, reliability, usability, security, responsiveness, and elasticity. Assessment of these factors leads to efficiency in designing a scheduler for CSP. These metrics also improved the quality of service (QoS) in the cloud. Many existing models and approaches evaluate these metrics. But these existing approaches do not offer efficient outcome. In this paper, a prominent performance model named the “spectral expansion method (SPM)” evaluates cloud reliability. The spectral expansion method (SPM) is a huge technique useful in reliability and performance modelling of the computing system. This approach solves the Markov model of cloud service providers (CSP) to predict the reliability. The SPM is better compared to matrix-geometric methods.
Cloud computing is a computing hypothesis, where a huge group of systems is linked together in private, public, or hybrid network, to offer dynamically amendable infrastructure for data storage, file storage, and application. With this emerging technology, application hosting, delivery, content storage, and reduced computation cost are achieved, and it acts as an essential module for the backbone of the Internet of ings (IoT). e efficiency of cloud service providers (CSP) could be improved by considering significant factors such as availability, reliability, usability, security, responsiveness, and elasticity. Assessment of these factors leads to efficiency in designing a scheduler for CSP. ese metrics also improved the quality of service (QoS) in the cloud. Many existing models and approaches evaluate these metrics. But these existing approaches do not offer efficient outcome. In this paper, a prominent performance model named the "spectral expansion method (SPM)" evaluates cloud reliability. e spectral expansion method (SPM) is a huge technique useful in reliability and performance modelling of the computing system. is approach solves the Markov model of cloud service providers (CSP) to predict the reliability. e SPM is better compared to matrix-geometric methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.