Uncoupling protein-3 (UCP-3) is a recently identified member of the mitochondrial transporter superfamily that is expressed predominantly in skeletal muscle. However, its close relative UCP-1 is expressed exclusively in brown adipose tissue, a tissue whose main function is fat combustion and thermogenesis. Studies on the expression of UCP-3 in animals and humans in different physiological situations support a role for UCP-3 in energy balance and lipid metabolism. However, direct evidence for these roles is lacking. Here we describe the creation of transgenic mice that overexpress human UCP-3 in skeletal muscle. These mice are hyperphagic but weigh less than their wild-type littermates. Magnetic resonance imaging shows a striking reduction in adipose tissue mass. The mice also exhibit lower fasting plasma glucose and insulin levels and an increased glucose clearance rate. This provides evidence that skeletal muscle UCP-3 has the potential to influence metabolic rate and glucose homeostasis in the whole animal.
Background and aims-Alterations in gluconeogenesis in the diseased liver can be assessed non-invasively using magnetic resonance spectroscopy by measuring changes in phosphomonoester resonance which contains information regarding several metabolites, including the phosphorylated intermediates of the gluconeogenic pathway.
Methods-
31P magnetic resonance spectroscopy was used to determine changes in phosphomonoesters following bolus infusions of 2.8 mmol/kg L-alanine in five patients with functionally compensated cirrhosis and in five patients with functionally decompensated cirrhosis.
Results-Compared with six healthy volunteers,baseline phosphomonoester values were elevated by 35% (p<0.05) in the compensated cirrhosis group and by 57% (p<0.01) in the decompensated cirrhosis group. Following alanine infusion, phosphomonoesters in healthy volunteers increased by 46% from baseline values (p<0.01), in patients with compensated cirrhosis by 27% (p<0.02) but those with decompensated cirrhosis showed no increase from baseline. There was a reduction in the percentage of inorganic phosphate signal in all subjects. Conclusions-By analysing changes in phosphomonoester and inorganic phosphate resonances it is possible to discern clear metabolic diVerences between healthy volunteers and patients with cirrhosis of varying severity using magnetic resonance spectroscopy. Those patients with functionally decompensated cirrhosis have higher percentage baseline phosphomonoester values but the absence of phosphomonoester elevation following L-alanine infusion suggests that they are unable to mount a significant metabolic response with a progluconeogenic stimulus. (Gut 2001;49:557-564)
Localized MRS and MRI showed that rosiglitazone reversed the hepatic steatosis, hepatomegaly and intramyocellular lipid, characteristic of the ZF rat, an animal model of obesity.
Background-In vivo hepatic phosphorus-31 magnetic resonance spectroscopy (MRS) provides non-invasive information about phospholipid metabolism. Aims-To delineate MRS abnormalities in patients with chronic ductopenic rejection (CDR) and to characterise spectral changes by in vitro MRS and electron microscopy. Patients and methods-Sixteen liver transplant recipients (four with CDR; 12 with good graft function) and 29 controls (23 healthy volunteers; six patients with biliary duct strictures) were studied with in vivo 31 P MRS. Peak area ratios of phosphomonoesters (PME) and phosphodiesters (PDE), relative to nucleotide triphosphates (NTP) were measured. In vitro MRS and electron microscopy were performed on biopsy specimens from five patients with CDR, freeze clamped at retransplantation. Phosphoethanolamine (PE), phosphocholine (PC), glycerophosphorylethanolamine (GPE), and glycerophosphorylcholine (GPC) concentrations were measured. Results-The 12 patients with good graft function displayed no spectral abnormalities in vivo; the four patients with CDR showed significantly elevated PME:NTP (p<0.01) and PDE:NTP ratios (p<0.005). Patients with biliary strictures had significant diVerences in PME:NTP (p<0.01) from patients with CDR, but not in mean PDE:NTP. In vitro spectra from CDR patients showed elevated PE and PC, mirroring the in vivo changes in PME, but reduced GPE and GPC concentrations were observed, at variance with the in vivo PDE findings. On electron microscopy, there was no proliferation in hepatocyte endoplasmic reticulum. Conclusions-The increase in PME:NTP reflects altered phospholipid metabolism in patients with CDR, while the increase in PDE:NTP may represent a significant contribution from bile phospholipid. (Gut 1998;42:735-743) Keywords: in vivo 31 P magnetic resonance spectroscopy; in vitro 31 P magnetic resonance spectroscopy; liver transplantation; chronic ductopenic rejection; electron microscopy; phospholipids Orthotopic hepatic transplantation has become the treatment of choice for end stage liver failure, but between 2% and 17% of patients subsequently develop chronic graft rejection, occurring most often between six weeks and six months postoperatively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.