Amorphous silicate minerals, often described as rock flour, were once common in natural water sources and abundant in glacial stream waters. Not only do the silica mineral particles bond water and other elements for transport; they also can be adsorbed with reduced hydrogen, which releases electrons, providing antioxidant or reducing potential to surrounding fluids. The purpose of this investigation was to examine the cardiovascular responses during exercise after consumption of a dietary silicate mineral antioxidant supplement, Microhydrin((R)) (Royal BodyCare, Inc., Irving, TX). A clinical trial incorporating a double-blind, placebo-controlled, crossover experimental design was employed. Subjects received either active agent or placebo, four capsules per day, for 7 days before the trial. The trial evaluated six exercise bicycle-trained subjects performing a 40-km bicycling time trial. Ratings of perceived exertion and measurements of oxygen uptake, heart rate, performance workload, and preexercise and postexercise blood lactate concentrations were obtained. Although there were no differences (P >/=.05) in work performed, heart rate, oxygen uptake, and ratings of perceived exertion during the time trial, the postexercise blood lactate concentrations were significantly lower (P =.05) when the silicate mineral supplement was used, compared with placebo. These data suggest a beneficial effect of Microhydrin on lactate metabolism.
A 2×3 factorial arrangement of treatments was used in a completely randomized design to determine the effects of dietary Zn on performance and immune response of acutely endotoxemic growing pigs (n=96, mean BW=24.9 kg). Factors included 1) intramuscular injection of 10 µg/kg BW of Escherichia coli lipopolysaccharide (LPS) or control and 2) supplemental Zn at 10, 50, or 150 ppm. Diets were fed beginning after weaning (initial body weight=7.6 kg) in the nursery and continued for 16 d into the grower phase. The basal corn-soybean meal grower diet contained 1% lysine and 34.3 ppm Zn. Pigs were acclimated for 12 d in the growerfinishing facility before LPS treatment on d 13. Gain, feed intake, and feed efficiency were unaffected by dietary Zn. Feed intake decreased (p<0.10) and gain/feed was greater (p<0.10) from d 13 to d 16 for pigs injected with LPS. Serum Zn and alkaline phosphatase activity increased (p<0.05) with increasing Zn levels. The febrile response to LPS peaked at 6 h post exposure and pigs were afebrile within 12 h. Rectal temperature was greater (p<0.05) in pigs receiving 50 and 150 ppm Zn than in pigs supplemented with 10 ppm Zn. In vivo cellular immune response, measured on d 13 by skin thickness response to phytohemagglutinin (PHA), was greater after 6 h (p< 0.05) in pigs fed 10 ppm Zn and exposed to LPS compared to all other treatments, but was not affected at 12, 24 or 48 h. Zinc did not affect mitogen induced lymphocyte proliferation. Zinc supplemented at 50 or 150 ppm resulted in an enhanced febrile response in pigs subjected to iatrogenic endotoxemia, but did not affect pig performance or immune response measurements.
The objective of this study was to determine the effects of dietary Zn level on performance, serum Zn concentrations, alkaline phosphatase activity (ALP), and immune response of pigs inoculated with Porcine Reproductive and Respiratory Syndrome virus (PRRSv) and Mycoplasma hyopneumoniae. A 2×4 factorial arrangement of treatments was used in a randomized design. Factors included; 1) PRRSv and M. hyopneumoniae inoculation (n=36 pigs) or sham inoculation (n=36 pigs) with media when pigs entered the grower facility (d 0) at 9 weeks of age and 2) 10, 50, 150 ppm supplemental Zn sulfate (ZnSO 4 ) from weaning until the completion of the study, or 2,000 ppm supplemental ZnSO 4 for two weeks in the nursery and then supplementation with 150 ppm ZnSO 4 for the remainder of the trial. The basal diet contained 34 ppm Zn. Pigs were weighed on d 0, 10, 17, 24 and 31 and blood samples were collected on d 0, 7, 14, 21 and 28. Pigs inoculated with PRRSv were serologically positive at d 28 and control pigs remained negative to PRRSv. In contrast, the M hyopneumoniae inoculation was inconsistent with 33.3% and 52.8% of pigs serologically positive at d 28 in the control and infected groups, respectively. A febrile response was observed for approximately one week after inoculation with PRRSv. Feed intake (p<0.01) and gain (p<0.1) were less in PRRSv infected pigs than control pigs for the 31 d study. However, performance did not differ among pigs in the four levels of ZnSO 4 . Assessments of immune responses failed to provide unequivocal influence of either PRRSv inoculation or ZnSO 4 level. These data suggest that PRRSv and M. hyopneumoniae act to produce some performance deficits and the influence of Zn supplementation of nursery age pigs does not have clear effect in grower pigs affected with disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.