Adolescence is a time of dramatic neuroendocrine changes that are required for sexual maturation. Hormonal mimicking or inhibiting chemicals can cause significant impairment during this critical period. Vinclozolin (Vin) has been shown to be an anti-androgen affecting male offspring in rats in utero, and its mechanism of action may be mediated by inhibition of androgenic receptor action. The majority of teenagers working on farms are male, and therefore a systemic fungicide, vinclozolin, was selected for study. The rabbit has proved to be an excellent species for modelling reproductive toxicant effects in the male and was selected as the test species. The peripubertal phase for the rabbit was determined to be between the 3rd and 4th months. A 2-month dosing period was therefore initiated at 3 months of age and carried through to the 4th month. Vin was administered by dermal application (100 mg kg(-1) in 100 microl of dimethylsulphoxide) daily. Body weights were determined weekly. The rabbits were then held until fully mature (6 months of age). Semen was collected and evaluated from sexually mature males on a weekly schedule for 5 weeks to maximize sperm output. An automated solid phase extraction procedure for monitoring exposures through isolation and quantification of Vin and its metabolic products was developed. Increased plasma levels of Vin and M2 were found throughout the experimental period. The exposed rabbits had a smaller weight gain during pubertal growth (approaching significance; P=0.059). At maturity, the accessory sex glands of the exposed animals weighed less than those of the controls (P=0.016). Surprisingly, the pooled sperm count of the exposed animals was significantly higher (P=0.017) than that of the unexposed animals. The anti-androgenic effects of Vin may have blocked the negative feedback mechanism of testosterone on the hypothalamus or pituitary gland, allowing for an increase in gonadotrophin release, and consequently increasing sperm production at puberty.
The earliest report linking environmental (occupational) exposure to adverse human male reproductive effects dates back to1775 when an English physician, Percival Pott, reported a high incidence of scrotal cancer in chimney sweeps. This observation led to safety regulations in the form of bathing requirements for these workers. The fact that male-mediated reproductive harm in humans may be a result of toxicant exposures did not become firmly established until relatively recently, when Lancranjan studied lead-exposed workers in Romania in 1975, and later in 1977, when Whorton examined the effects of dibromochloropropane (DBCP) on male workers in California. Since these discoveries, several additional human reproductive toxicants have been identified through the convergence of laboratory and observational findings. Many research gaps remain, as the pool of potential human exposures with undetermined effects on male reproduction is vast. This review provides an overview of methods used to study the effects of exposures on male reproduction and their reproductive health, with a primary emphasis on the implementation and interpretation of human studies. Emphasis will be on occupational exposures, although much of the information is also useful in assessing environmental studies, occupational exposures are usually much higher and better defined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.