In the construction field, the Building Information Modeling (BIM) methodology is becoming increasingly predominant and the standardization of its use is now an essential operation. This method has become widespread in recent years, thanks to the advantages provided in the framework of project management and interoperability. Hoping for its complete dissemination, it is unthinkable to use it only for new construction interventions. Many are experiencing what happens with the so-called Heritage Building Information Modeling (HBIM); that is, how BIM interfaces with Architectural Heritage or simply with historical buildings. This article aims to deal with the principles and working methodologies behind BIM/HBIM and modeling. The aim is to outline the themes on which to base a new approach to the instrument. In this way, it can be adapted to the needs and characteristics of each type of building. Going into the detail of standards, the text also contains a first study regarding the classification of moldable elements. This proposal is based on current regulations and it can provide flexible, expandable, and unambiguous language. Therefore, the content of the article focuses on a revision of the thinking underlying the process, also providing a more practical track on communication and interoperability.
<p><strong>Abstract.</strong> In urban areas, the “built” is defined by many different elements. Not only buildings but also open spaces containing green areas, viability, urban furniture, underground facilities. While the H-BIM sector focuses, rightly, on buildings of great historical significance, in our case it is been consider a part of the built that it usually not analyse: the urban open space. One of the interesting themes is the possibility of having a single tool that integrates the different objects present in a complex environment such as the urban area. The process with BIM model could allow a huge saving in terms of time and costs considering public tender, maintenance or construction phase of a project. Facility management operating through BIM is another relevant theme considering the whole life of a construction. Finally, another important theme is the connections between elements above the ground (visible elements) and subsoil (not visible elements), not only for the administrations but also if related to the HBIM environment.</p><p>The paper reports the analysis of the experience performed, particularly related to questions about detail and accuracy of the BIM model.</p><p>A methodology for modelling open spaces is been assuming, it is described possible improvements and considerations on the result.</p>
The new methodologies of surveying and modelling allow for important advantages in the whole life cycle of a building. Specifically, the point cloud, with its richness in detail, can be the basis to set an interesting and useful work of creating a BIM model. Inside, all the objects with a well-structured informative part allow for the interoperability between the different figures involved in the process. One of the main aims can be the use of a BIM model to manage the competitive tender in the public works in order to control time and costs. The case study is about urban open space: analysis of digital and integrated management of a built environment.
Abstract. In recent years, the architecture domain, driven by today's digital transition, has been actively exploring the world of digital twins, also thanks to the technological advancement that supports the progress on the issue. Within this context, the present work deals with the wide world of Architectural Cultural Heritage digitization. It aims to obtain a tool to support knowledge, investigation, and management of the built heritage. The research proposes an approach for digital twin development that comprehensively describes the architectural asset, including elements that are no longer present or visible. For this purpose, the three-dimensional model collects the available heterogeneous geometric datum, inevitably characterized by different levels of accuracy. The digitization model designed involves the coexistence of objects belonging to different Levels of Geometric Information (LOGI). All types of data then cooperate in defining the overall geometric information. Therefore, this framework allows for exploiting geometric information from both geomatics digital surveys and historical sources. This system allows obtaining a digital model that includes the different evolutionary phases of architectural assets by providing an overall view of these structures, an essential notion for operating properly on this kind of architecture. The digitization system was tested on a particular case study, the Ghirlanda of the Castello Sforzesco in Milan. The complexity of the property and the richness of the information heritage guided this choice, providing the basis for an appropriate and effective experimental activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.