These results show that once daily oral valganciclovir can produce exposures of ganciclovir (AUC24) exceeding those attained using intravenous ganciclovir 10 mg/kg. This suggests that oral valganciclovir may be suitable in many circumstances currently requiring intravenous ganciclovir, allowing for more convenience in the management of patients with CMV retinitis by utilising a 2 or 4 tablet daily regimen to cover all phases of treatment.
A major issue in designing drugs as antagonists at the glycine site of the NMDA receptor has been to achieve good in vivo activity. A series of 4-hydroxyquinolone glycine antagonists was found to be active in the DBA/2 mouse anticonvulsant assay, but improvements in in vitro affinity were not mirrored by corresponding increases in anticonvulsant activity. Here we show that binding of the compounds to plasma protein limits their brain penetration. Relative binding to the major plasma protein, albumin, was measured in two different ways: by a radioligand binding experiment or using an HPLC assay, for a wide structural range of glycine/NMDA site ligands. These measures of plasma protein binding correlate well (r = 0.84), and the HPLC assay has been used extensively to quantify plasma protein binding. For the 4-hydroxyquinolone series, binding to plasma protein correlates (r = 0.92) with log P (octanol/pH 7.4 buffer) over a range of log P values from 0 to 5. The anticonvulsant activity increases with in vitro affinity, but the slope of a plot of pED50 versus pIC50 is low (0.40); taking plasma protein binding into account in this plot increases the slope to 0.60. This shows that binding to albumin in plasma reduces the amount of compound free to diffuse across the blood-brain barrier. Further evidence comes from three other experiments: (a) Direct measurements of brain/blood ratios for three compounds (2, 16, 26) show the ratio decreases with increasing log R. (b) Warfarin, which competes for albumin binding sites dose-dependently, decreased the ED50 of 26 for protection against seizures induced by NMDLA. (c) Direct measurements of brain penetration using an in situ brain perfusion model in rat to measure the amount of drug crossing the blood-brain barrier showed that compounds 2, 26, and 32 penetrate the brain well in the absence of plasma protein, but this is greatly reduced when the drug is delivered in plasma. In the 4-hydroxyquinolones glycine site binding affinity increases with lipophilicity of the 3-substituent up to a maximum at a log P around 3, then does not improve further. When combined with increasing protein binding, this gives a parabolic relationship between predicted in vivo activity and log P, with a maximum log P value of 2.39. Finally, the plasma protein binding studies have been extended to other series of glycine site antagonists, and its is shown that for a given log P these have similar protein binding to the 4-hydroxyquinolones, except for compounds that are not acidic. The results have implications for the design of novel glycine site antagonists, and it is suggested that it is necessary to either keep log P low or pKa high to obtain good central nervous system activity.
Previous studies indicate that a variety of pharmacological agents interfere with the prepulse inhibition of the acoustic startle (PPI) response including phencyclidine (PCP), 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), amphetamine, and apomorphine. Strain differences have been observed in the ability of apomorphine to disrupt PPI, although the degree to which these strain differences occur after administration of nondopaminergic drugs or the degree to which differences can be observed in other models of dopamine (DA) receptor activation has not been elucidated. The present study tested the effects of apomorphine, amphetamine, 8-OH-DPAT, and PCP on PPI in the Sprague Dawley and Wistar rat strains. Because apomorphine disrupts PPI via activation of DA receptors in the nucleus accumbens, apomorphine-induced hyperlocomotion, also a behavioral model of nucleus accumbens DA receptor activation, was measured in both rat strains. Administration of PCP or 8-OH-DPAT attenuated PPI in both strains, whereas apomorphine and amphetamine only attenuated PPI in Wistar rats. The ability of apomorphine to increase motor activity in the absence of a startle-eliciting stimulus was similar in the two strains, as was apomorphine-induced hyperlocomotion. A time course analysis of the effects of apomorphine on startle response in Sprague Dawley rats found that changes in the magnitude of PPI followed changes in basic startle amplitude. Similarly, no apomorphine-induced attenuation of PPI was observed in Sprague Dawley rats after 6-OHDA-induced DA receptor supersensitivity in the nucleus accumbens. These data suggest a dissociation between the effects of DA receptor agonists in PPI and other behavioral models of DA receptor activation.
Previous studies have demonstrated that the glycine/NMDA receptor antagonist, L-701,324 (7-chloro-4-hydroxy-3(3-phenoxy)phenyl-2(H)quinolone) blocks the activation of mesolimbic dopamine systems induced following psychostimulant administration in the rat (Bristow et al. 1994). In the present study, pretreatment with L-701,324 also reversed the deficit in prepulse inhibition (PPI) observed in rats reared in social isolation after weaning. Given that PPI is also attenuated in schizophrenic patients and that isolation rearing induces both neurochemical and behavioural abnormalities suggestive of a physiologically induced state of dopaminergic hyperactivity, these results suggest that blockade of the glycine/NMDA receptor may offer a new strategy for the development of novel antipsychotic agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.