Delayed Earth system recovery following the end-Permian mass extinction is often attributed to severe ocean anoxia. However, the extent and duration of Early Triassic anoxia remains poorly constrained. Here we use paired records of uranium concentrations ([U]) and 238 U/ 235 U isotopic compositions (δ 238 U) of Upper Permian−Upper Triassic marine limestones from China and Turkey to quantify variations in global seafloor redox conditions. We observe abrupt decreases in [U] and δ 238 U across the end-Permian extinction horizon, from ∼3 ppm and −0.15‰ to ∼0.3 ppm and −0.77‰, followed by a gradual return to preextinction values over the subsequent 5 million years. These trends imply a factor of 100 increase in the extent of seafloor anoxia and suggest the presence of a shallow oxygen minimum zone (OMZ) that inhibited the recovery of benthic animal diversity and marine ecosystem function. We hypothesize that in the Early Triassic oceans-characterized by prolonged shallow anoxia that may have impinged onto continental shelvesglobal biogeochemical cycles and marine ecosystem structure became more sensitive to variation in the position of the OMZ. Under this hypothesis, the Middle Triassic decline in bottom water anoxia, stabilization of biogeochemical cycles, and diversification of marine animals together reflect the development of a deeper and less extensive OMZ, which regulated Earth system recovery following the end-Permian catastrophe.paleoredox | uranium isotopes | biogeochemical cycling | carbon isotopes | Early TriassicT he end-Permian mass extinction-the most severe biotic crisis in the history of animal life-was followed by 5 million years of reduced biodiversity (1, 2), limited ecosystem complexity (3), and large perturbations in global biogeochemical cycling (4, 5). Ocean anoxia has long been invoked both as a cause of the extinction (6-8) and as a barrier to rediversification (9). Numerous lines of evidence demonstrate widespread anoxic conditions around the time of the end-Permian mass extinction (e.g., refs. 6 and 10-12). In contrast, the prevalence of anoxia during the 5-to 10-millionyear recovery interval remains poorly constrained (13,14).Reconstructing paleoredox conditions is challenging because some indicators of anoxia characterize only the local conditions of the overlying water column, whereas other indicators may be influenced by confounding factors, such as weathering rates on land. Here, we use paired measurements of [U] and δ 238 U in marine carbonate rocks to differentiate changes in weathering of U from variations in global marine redox conditions. Microbially mediated reduction of U(VI) to U(IV) under anoxic conditions at the sediment−water interface results in a substantial decrease in uranium solubility and a measureable change in 238 U/ 235 U (15-18). Because 238 U is preferentially reduced and immobilized relative to 235 U, the δ 238 U value of seawater U(VI) decreases as the areal extent of bottom water anoxia increases (Fig. S1). Consequently, a global increase in the extent of anoxi...
The end‐Triassic extinction coincided with an increase in marine black shale deposition and biomarkers for photic zone euxinia, suggesting that anoxia played a role in suppressing marine biodiversity. However, global changes in ocean anoxia are difficult to quantify using proxies for local anoxia. Uranium isotopes (δ238U) in CaCO3 sediments deposited under locally well‐oxygenated bottom waters can passively track seawater δ238U, which is sensitive to the global areal extent of seafloor anoxia due to preferential reduction of 238U(VI) relative to 235U(VI) in anoxic marine sediments. We measured δ238U in shallow‐marine limestones from two stratigraphic sections in the Lombardy Basin, northern Italy, spanning over 400 m. We observe a ∼0.7‰ negative excursion in δ238U beginning in the lowermost Jurassic, coeval with the onset of the initial negative δ13C excursion and persisting for the duration of subsequent high δ13C values in the lower‐middle Hettangian stage. The δ238U excursion cannot be realistically explained by local mixing of uranium in primary marine carbonate and reduced authigenic uranium. Based on output from a forward model of the uranium cycle, the excursion is consistent with a 40–100‐fold increase in the extent of anoxic deposition occurring worldwide. Additionally, relatively constant uranium concentrations point toward increased uranium delivery to the oceans from continental weathering, which is consistent with weathering‐induced eutrophication following the rapid increase in pCO2 during emplacement of the Central Atlantic Magmatic Province. The relative timing and duration of the excursion in δ238U implies that anoxia could have delayed biotic recovery well into the Hettangian stage.
The development of complex alteration layers on silicate mineral surfaces undergoing dissolution is a widely observed phenomenon. Given the complexity of these layers, most kinetic models used to predict rates of mineral-fluid interactions do not explicitly consider their formation. As a result, the relationship between the development of the altered layers and the final dissolution rate is poorly understood. To improve our understanding of the relationship between the alteration layer and the dissolution rate, we developed a spatially resolved surface kinetic model for olivine dissolution and applied it to a series of closed-system experiments consisting of three-phases (water (±NaCl), olivine, and supercritical CO 2) at conditions relevant to in situ mineral carbonation (i.e. 60 °C, 100 bar CO 2). We also measured the corresponding d 26/24 Mg of the dissolved Mg during early stages of dissolution. Analysis of the solid reaction products indicates the formation of Mg-depleted layers on the olivine surface as quickly as 2 days after the experiment was started and before the bulk solution reached saturation with respect to amorphous silica. The d 26/24 Mg of the dissolved Mg decreased by approximately 0.4‰ in the first stages of the experiment and then approached the value of the initial olivine (À0.35‰) as the steady-state dissolution rate was approached. We attribute the preferential release of 24 Mg to a kinetic effect associated with the formation of a Mg-depleted layer that develops as protons exchange for Mg 2+. We used experimental data to calibrate a surface kinetic model for olivine dissolution that includes crystalline olivine, a distinct ''active layer" from which Mg can be preferentially removed, and secondary amorphous silica precipitation. By coupling the spatial arrangement of ions with the kinetics, this model is able to reproduce both the early and steady-state long-term dissolution rates, and the kinetic isotope fractionation. In the early stages of olivine dissolution the overall dissolution rate is controlled by exchange of protons for Mg, while the steady-state dissolution rate is controlled by the net removal of both Mg and Si from the active layer. Modeling results further indicate the importance of the spatial coupling of individual reactions that occur during olivine dissolution. The inclusion of Mg isotopes in this study demonstrates the utility of using isotopic variations to constrain interfacial mass transfer processes. Alternative kinetic frameworks, such as the one presented here, may provide new approaches for modeling fluid-rock interactions.
Lead (Pb) exposure is a major public health problem worldwide. Although high levels of Pb in blood in Bangladesh have been documented, the dominant Pb sources contributing to human exposure in rural Bangladesh have not been determined. Here, we first obtained blood from pregnant women from three rural Bangladeshi districts who were previously assessed by a case-control and sampling study, and we then conducted semistructured in-depth interviews to understand Pb exposure behavior and finally collected samples of the suspected Pb sources. We measured the Pb isotopic composition of both potential Pb sources and 45 blood samples in order to understand which of three sources predominate: (1) food from Pb-soldered cans, (2) turmeric, or (3) geophagous materials (clay, soil, or ash). The Pb isotope ratios of the three sources are distinct ( p = 0.0001) and blood isotope ratios are most similar to turmeric. Elevated lead and chromium (Cr) concentrations in turmeric and a yellow pigment used in turmeric processing are consistent with reported consumption behavior that indicated turmeric as a primary contributor to blood Pb. The Pb isotopic composition analyses combined with a case-control and sampling approach provides evidence that turmeric adulterated with the yellow Pb-bearing pigment is the main Pb exposure source in these districts and illustrates the need to assess drivers and practices of turmeric adulteration, as well as the prevalence of adulteration across South Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.