Purpose
Despite widespread use of 3-dimensional (3D) micro-porous scaffolds to promote their potential application in cartilage tissue engineering, only a few studies have examined the response to hydrostatic pressure of engineered constructs. A high cyclic pressurization, currently believed to be the predominant mechanical signal perceived by cells in articular cartilage, was used here to stimulate bovine articular chondrocytes cultured in a synthetic 3D porous scaffold (DegraPol).
Methods
Construct cultivation lasted 3 days with applied pressurization cycles of amplitude 10 MPa, frequency 0.33 Hz, and stimulation sessions of 4 hours/day.
Results
At 3 days of culture, with respect to pre-culture conditions, the viability of the pressurized constructs did not vary, whereas it underwent a 16% drop in the unpressurized controls. Synthesis of α-actin was 34% lower in all cultured constructs. Synthesis of collagen II/collagen I did not vary in pressurized constructs, was 76% lower in unpressurized controls, and was around 230% higher in pressurized constructs with respect to unpressurized controls. Chondrocytes showed a phenotypic spherical morphology at time zero and at 3 days of pressurized culture.
Conclusions
Although the passage from 2D expansion to 3D geometry was effective to guide cell differentiation, only mechanical conditioning enabled the maintenance and further cell differentiation toward a mature chondrocytic phenotype.
Percutaneous pulmonary valve implantation is a potential treatment for right ventricular outflow tract (RVOT) dysfunction. However, RVOT implantation site varies among subjects and the success of the procedure depends on RVOT morphology selection. The aim of this study was to use in vitro testing to establish percutaneous valve competency in different previously defined RVOT morphologies. Five simplified RVOT geometries (stenotic, enlarged, straight, convergent, and divergent) were manufactured by silicone dipping. A mock bench was developed to test the percutaneous valve in the five different RVOTs. The bench consists of a volumetric pulsatile pump and of a hydraulic afterload. The pump is made of a piston driven by a low inertia programmable motor. The hydraulic afterload mimics the pulmonary input impedance and its design is based on a three element model of the pulmonary circulation. The mock bench can replicate different physiological and pathological hemodynamic conditions of the pulmonary circulation. The mock bench is here used to test the five RVOTs under physiological-like conditions: stroke volume range 40-70 mL, frequency range 60-80 bpm. The valved stent was implanted into the five different RVOT geometries. Pressures upstream and downstream of the valved stent were monitored. Flow rates were measured with and without the valved stent in the five mock RVOTs, and regurgitant fraction compared between the different valved stent RVOTs. The percutaneous valved stent drastically reduced regurgitant flow if compared with the RVOT without the valve. RVOT geometry did not significantly influence the flow rate curves. Mean regurgitant fractions varied from 5% in the stenotic RVOT to 7.3% in the straight RVOT, highlighting the influence of the RVOT geometry on valve competency. The mock bench presented in this study showed the ability to investigate the influence of RVOT geometry on the competence of valved stent used for percutaneous pulmonary valve treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.