A simulation-based investigation of errors in HF radar–derived, near-surface ocean current measurements is presented. The simulation model is specific to Coastal Ocean Dynamics Application Radar (CODAR) SeaSonde radar systems that employ a compact, collocated antenna geometry. In this study, radial current retrievals are obtained by processing simulated data using unmodified CODAR data processing software. To avoid limiting the results to specific ocean current and wind wave scenarios, the analyses employ large ensembles of randomly varying simulated environmental conditions. The effect of antenna pattern distortion on the accuracy of retrievals is investigated using 40 different antenna sensitivity patterns of varying levels of distortion. A single parameter is derived to describe the level of the antenna pattern distortion. This parameter is found to be highly correlated with the rms error of the simulated radial currents (r = 0.94) and therefore can be used as a basis for evaluating the severity of site-specific antenna pattern distortions. Ensemble averages of the subperiod simulated current retrieval standard deviations are found to be highly correlated with the antenna pattern distortion parameter (r = 0.92). Simulations without distortions of the antenna pattern indicate that an rms radial current error of 2.9 cm s−1 is a minimum bound on the error of a SeaSonde ocean radar system, given a typical set of operating parameters and a generalized ensemble of ocean conditions.
We compare the ship detection capabilities of the Automatic Identification System AIS (installed on some ships) and coastal, surface wave HF radars, showing how to use both systems together to enhance ship detection performance in coastal regions. Practical reasons to want better real-time awareness of the location, velocity and type of vessels along coasts include vessel safety, protection of the coastal environment and national security. Our model for the HF radar aspect uses an example radar with significant power and aperture, similar to the Pisces radar. The AIS model is for the high power (12.5 W) AIS unit and a significantly elevated receiver ( 250 ft asl). The HF system show good capability to ranges of 150 km for small ships to 250 km for large ships. The AIS system shows excellent capability out to a typical horizon of 50 km with irregular coverage beyond using ducted propagation to several hundred km and more. Use of both systems allows monitoring of both AIS and non-AIS equipped ships and enhances probability of detection for situations where both systems are functional.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.