The magnetic relaxation processes following the dynamical excitation of the spin system of ferromagnets are investigated by ferromagnetic resonance ͑FMR͒ between 1 and 70 GHz using epitaxial Fe 3 Si films as a prototype system. Two relaxation channels, i.e., dissipative, isotropic Gilbert damping G as well as anisotropic two-magnon scattering ⌫, are simultaneously identified by frequency and angle dependent FMR and quantitatively analyzed. The scattering rates due to two-magnon scattering at crystallographic defects for spin waves propagating in ͗100͘ and ͗110͘ directions, ␥⌫ ͗100͘ = 0.25͑2͒ GHz and ␥⌫ ͗110͘ = 0.04͑2͒ GHz, and the Gilbert damping term G = 0.051͑1͒ GHz are determined. We show that changing the film thickness from 8 to 40 nm and slightly modifying the Fe concentration influence the relaxation channels. Our results, which reveal the contributions of longitudinal and transverse relaxation processes may be of general importance for the understanding of spin-wave dynamics in magnetic structures.
Ferromagnetic resonance experiments of magnetic nanostructures over a large frequency range from 1 to 225 GHz are presented. We find unambiguous evidence for a nonlinear frequency dependence of the linewidth. The viscous Gilbert damping and two-magnon scattering are clearly separated. Both angular and frequency dependent measurements give a transverse scattering rate within the magnetic subsystem of the order of 10 9 s −1 , whereas the longitudinal Gilbert relaxation into the thermal bath is one to two orders of magnitude smaller.
The understanding of how spins move and can be manipulated at pico-and femtosecond time scales is the goal of much of modern research in condensed matter physics, with implications for ultrafast and more energy-efficient data processing and storage applications. However, the limited comprehension of the physics behind this phenomenon has hampered the possibility of realising a commercial technology based on it. Recently, it has been suggested that inertial effects should be considered in the full description of the spin dynamics at these ultrafast time scales, but a clear observation of such effects in ferromagnets is still lacking. Here, we report the first direct experimental evidence of intrinsic inertial spin dynamics in ferromagnetic thin films in the form of a nutation of the magnetisation at a frequency of approximately 0.5 THz. This allows us to reveal that the angular momentum relaxation time in ferromagnets is on the order of 10 ps.
We discuss the design and performance of a very sensitive low-field magnetometer based on the detection of free spin precession of gaseous, nuclear polarized 3 He or 129 Xe samples with a SQUID as magnetic flux detector. The device will be employed to control fluctuating magnetic fields and gradients in a new experiment searching for a permanent electric dipole moment of the neutron as well as in a new type of 3 He/ 129 Xe clock comparison experiment which should be sensitive to a sidereal variation of the relative spin precession frequency. Characteristic spin precession times after one day. Even in that sensitivity range, the magnetometer performance is statistically limited, and noise sources inherent to the magnetometer are not limiting. The reason is that free precessing 3 He ( 129 Xe) nuclear spins are almost completely decoupled from the environment. That makes this type of magnetometer in particular attractive for precision field measurements where a long-term stability is required.
We present a study of the ordering temperature of an ultrathin antiferromagnetic film in the proximity of a ferromagnetic layer. The Néel temperature of a single-crystalline antiferromagnetic FexMn1-x film on Cu(001) in contact with a ferromagnetic Ni layer was monitored by the discontinuity in the coercivity as a function of temperature by magneto-optical Kerr effect measurements. It decreases by up to 60 K if the magnetization axis of the ferromagnet is switched from out of plane to in plane by deposition of a Co overlayer. These results give clear evidence for a magnetic proximity effect in which the ferromagnetic layer substantially influences the ordering temperature of the antiferromagnetic layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.