As a transcriptional coactivator, Yorkie (Yki) is a major downstream target of the Hippo signalling pathway to regulate the organ size during animal development and regeneration. Previous microarray analysis in the silkworm, Bombyx mori, has shown that genes associated with the Hippo pathway were primarily expressed in gonads and imaginal discs. The RNA-interference-mediated silencing of Yki at the early wandering stage delayed B. mori development and ovary maturation, whereas baculovirus-mediated overexpression at the late larval instar facilitated organ growth and accelerated metamorphosis. Here, we employed CRISPR/Cas9-mediated mutagenesis to investigate the function of Yki in B. mori (BmYki) at the embryonic and early larval stages. Knocking out of BmYki led to reduced body size, moulting defects and, eventually, larval lethality. Sequence analysis of CRISPR/Cas9 mutants exhibited an array of deletions in BmYki. As a critical downstream effector of the Hippo kinase cassette, silencing of BmYki at the embryonic stage is indispensable and the consequence is lethal. Given that the Hippo signalling pathway is evolutionarily conserved, Yki has the potential to be a novel molecular target for genetic-based pest management practices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.