Investigating the diurnal and seasonal variations of plant photosynthetic performance under future atmospheric CO2 conditions is essential for understanding plant adaptation to global change and for estimating parameters of ecophysiological models. In this study, diurnal changes of net photosynthetic rate (Anet), stomatal conductance (gs), and photochemical efficiency of PSII (Fv′/Fm′) were measured in two rice cultivars grown in the open-top-chambers at ambient (∼450 μmol mol–1) and elevated (∼650 μmol mol–1) CO2 concentration [(CO2)] throughout the growing season for 2 years. The results showed that elevated (CO2) greatly increased Anet, especially at jointing stage. This stimulation was acclimated with the advance of growing season and was not affected by either stomatal limitations or Rubisco activity. Model parameters in photosynthesis model (Vcmax, Jmax, and Rd) and two stomatal conductance models (m and g1) varied across growing stages and m and g1 also varied across (CO2) treatments and cultivars, which led to more accurate photosynthesis and stomatal conductance simulations when using these cultivar-, CO2-, and stage- specific parameters. The results in the study suggested that further research is still needed to investigate the dominant factors contributing to the acclimation of photosynthetic capacity under future elevated CO2 conditions. The study also highlighted the need of investigating the impact of other environmental, such as nitrogen and O3, and non-environmental factors, such as additional rice cultivars, on the variations of these parameters in photosynthesis and stomatal conductance models and their further impacts on simulations in large scale carbon and water cycles.
Chlorophyll content is an important indicator of winter wheat health status. It is valuable to investigate whether the relationship between spectral reflectance and the chlorophyll content differs under elevated CO2 condition. In this open-top chamber experiment, the CO2 treatments were categorized into ambient (aCO2; about 400 μmol⋅mol–1) or elevated (eCO2; ambient + 200 μmol⋅mol–1) levels. The correlation between the spectral reflectance and the chlorophyll content of the winter wheat were analyzed by constructing the estimation model based on red edge position, sensitive band and spectral index methods, respectively. The results showed that there was a close relationship between chlorophyll content and the canopy spectral curve characteristics of winter wheat. Chlorophyll content was better estimated based on sensitive spectral bands and difference vegetation index (DVI) under both aCO2 and eCO2 conditions, though the accuracy of the models varied under different CO2 conditions. The results suggested that the hyperspectral measurement can be effectively used to estimate the chlorophyll content under both aCO2 and eCO2 conditionsand could provide a useful tool for monitoring plants physiology and growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.