Alpha, neutron, and heavy-ion single-event measurements were performed on both high-performance and hardened flip-flop designs in a 28-nm bulk CMOS technology. The experimental results agree very well with simulation predictions and confirm that event error rates can be reduced dramatically using effective layout design.Index Terms-Dual-interlocked cell (DICE), Layout design through Error Aware Positioning (LEAP), radhard design methodology, radiation hardening, radiation hardening by design, single-event effect, single-event upsets (SEU), soft error.
Device-level simulation capabilities have been developed to self-consistently model the Si-nanowire (NW) biosensor systems. Our numerical study demonstrates that by introducing electro-diffusion current flow in the electrolyte solutions, the electrostatic screening of the biological charge can be significantly suppressed; an improvement of the sensed signal strength by >≈10X is indicated. Based on such an operation principle, the screening-induced performance limits on Si-NW biosensors can be overcome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.