[1] We investigated whether one or a few coupling functions can represent best the interaction between the solar wind and the magnetosphere over a wide variety of magnetospheric activity. Ten variables which characterize the state of the magnetosphere were studied. Five indices from ground-based magnetometers were selected, namely Dst, Kp, AE, AU, and AL, and five from other sources, namely auroral power (Polar UVI), cusp latitude (sin(L c )), b2i (both DMSP), geosynchronous magnetic inclination angle (GOES), and polar cap size (SuperDARN). These indices were correlated with more than 20 candidate solar wind coupling functions. One function, representing the rate magnetic flux is opened at the magnetopause, correlated best with 9 out of 10 indices of magnetospheric activity. This is dF MP /dt = v 4/3 B T 2/3 sin 8/3 (q c /2), calculated from (rate IMF field lines approach the magnetopause, $v)(% of IMF lines which merge, sin 8/3 (q c /2))(interplanetary field magnitude, B T )(merging line length,). The merging line length is based on flux matching between the solar wind and a dipole field and agrees with a superposed IMF on a vacuum dipole. The IMF clock angle dependence matches the merging rate reported (albeit with limited statistics) at high altitude. The nonlinearities of the magnetospheric response to B T and v are evident when the mean values of indices are plotted, in scatterplots, and in the superior correlations from dF MP /dt. Our results show that a wide variety of magnetospheric phenomena can be predicted with reasonable accuracy (r > 0.80 in several cases) ab initio, that is without the time history of the target index, by a single function, estimating the dayside merging rate. Across all state variables studied (including AL, which is hard to predict, and polar cap size, which is hard to measure), dF MP /dt accounts for about 57.2% of the variance, compared to 50.9% for E KL and 48.8% for vBs. All data sets included at least thousands of points over many years, up to two solar cycles, with just two parameter fits, and the correlations are thus robust. The sole index which does not correlate best with dF MP /dt is Dst, which correlates best (r = 0.87) with p 1/2 dF MP /dt. If dF MP /dt were credited with this success, its average score would be even higher.Citation: Newell, P. T., T. Sotirelis, K. Liou, C.-I. Meng, and F. J. Rich (2007), A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables,
Abstract. We present a comprehensive observational study of the magnetospheric response to an interplanetary magnetic field (IMF) tangential discontinuity, which first struck the postnoon bow shock and magnetopause and then swept past the prenoon bow shock and magnetopause on July 24, 1996. Although unaccompanied by any significant plasma variation, the discontinuity interacted with the bow shock to form a hot flow anomaly (HFA), which was observed by Interball-1 just upstream from the prenoon bow shock. Pressures within and Earthward of the HFA were depressed by an order of magnitude, which allowed the magnetopause to briefly (-7 min) move outward some 5 R E beyond its nominal position and engulf Interball-1.A timing study employing nearby Interball-1 and Magion-4 observations demonstrates that this motion corresponded to an antisunward and northward moving wave on the magnetopause. The same wave then engulfed Geotail, which was nominally located downstream in the outer dawn magnetosheath. Despite its large amplitude, the wave produced only minor effects in GOES-8 geosynchronous observations near local dawn. Polar Ultraviolet Imager (UVI) observed a sudden brightening of the afternoon aurora, followed by an even more intense transient brightening of the morning aurora. Consistent with this asymmetry, the discontinuity produced only weak near-simultaneous perturbations in highlatitude postnoon ground magnetometers but a transient convection vortex in the prenoon Greenland ground magnetograms. The results of this study indicate that the solar wind interaction with the bow shock is far more dynamic than previously imagined and far more significant to the solar wind-magnetosphere interaction.
auroral power is suppressed in summer, while dayside auroral power is enhanced in summer and forms the so-called postnoon auroral hot spots, all by a factor of •2. The average energy of precipitating electrons is higher in the dark than in the sunlit hemisphere, while the number flux is lower in the dark than in the sunlit hemisphere for all regions. These changes, up to a factor of -•3, are local time and latitude dependent. The suppression of the nightside auroral power in summer is associated with a large decrease in the electron energy, whereas the enhancement of dayside aurora in summer is associated with a large increase in the electron number flux. The increase of dayside auroral power in summer may be associated with the large-scale upward field-aligned currents, which peak in summer. Results are also discussed in the context of a conductivity feedback instability and a cyclotron maser instability. The asymmetric seasonal effects on the dayside and nightside auroras suggest a voltage generator for the dayside magnetosphere and a current generator for the nightside magnetosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.