Purpose – The purpose of this paper is to evaluate the influence of assembly parameters on lead-free solder joints reliability in Package-on-Package (PoP) Technology and demonstrate factors important for this issue. Design/methodology/approach – Two types of soldering materials and three different assembly procedures were used for assembly of PoP system. The reliability properties of assembled PoP systems were investigated using accelerated aging and periodic resistance measurements of daisy-chain solder joints systems. The purpose of such approach was to determine which soldering material (flux or solder paste) as well as which assembly process parameter (dipping depth of upper component in soldering material), would provide better reliability properties of the solder joints in the PoP system. Findings – It was stated that both selected flux and solder paste dedicated to assembly of PoP systems can be utilized in soldering of PoP applications. More reliable PoP systems applications require larger attention regarding materials selection and assembly parameters. It is recommended 50 per cent dipping depth of ball’s height into soldering material during upper PoP component assembly for more reliable applications. For less demanding PoP systems, the process window from 30 up to 70 per cent is acceptable. All observed failures after thermal shocks occurred in upper PoP components. Originality/value – This paper explains how materials and assembly parameters have influence on lead-free solder joints reliability in PoP systems. Especially, influence of process window for dipping procedure of upper components balls into soldering material was presented.
Purpose – The purpose of this paper is to investigate screen-printed high-frequency (HF) antennas for radio frequency identification (RFID) on-metal transponders in which a magnetic sheet was used as a substrate material. Design/methodology/approach – A transponder antenna was designed in the form of square coil using a high-frequency electromagnetic software. Then, the antenna was fabricated with screen printing technique on two different magnetic sheets (RFN4 and RFN7) and on polyethylene naphthalate (PEN) foil for comparison. Its printing was carried out with polymer pastes based on silver flakes (PM-406 and SF). Thickness, track width and spacing were examined for the antennas using digital microscope and contact profilometer. Resistance and inductance were also measured, and resonant frequency, quality factor and target values of capacitance to achieve resonant frequency of the tested antenna at 13.56 MHz were calculated. Finally, RFID chips were mounted to the prepared antennas using an isotropic conductive adhesive, and a maximum read distance was measured with a reader installed in a smartphone. Findings – It was found that an antenna thickness on the magnetic sheets used was higher than on PEN foil. At the same time, surface roughness of the fabricated antennas on these sheets was revealed to be higher as well. Inductance of the measured antennas exhibited good conformity with the antenna design, but higher divergence was noticed in the measured resistance. Its lowest value was achieved when the antenna was printed with the paste PM-406 on PEN foil and the highest one when it was fabricated with the paste SF on the same substrate. This suggests that high attention needs to be paid to a polymer paste selected for antenna printing. The performed tests showed that the magnetic sheet RFN4 seems to be better substrate for on-metal transponders compared to RFN7 due to lower resistance and higher quality factor of the prepared antennas. Research limitations/implications – Further investigations are required to examine mechanical and thermal durability of the HF antennas printed on the magnetic sheets. Practical implications – The investigated HF antennas fabricated on magnetic sheets can find application in near field communication (NFC) transponders designed to be placed on metallic surfaces, e.g. on frames of advertising screens. Originality/value – Influence of used magnetic sheets and polymer pastes on geometry and electrical properties of HF antennas for RFID on-metal transponders was investigated. The presented investigations can be interesting for NFC/RFID designers who are involved in designing systems suitable for metallic surfaces.
Purpose The purpose of this study is to design and fabricate a simple passive sensor circuitry embedded into a printed circuit board (PCB) and then to examine its properties. Design/methodology/approach A passive sensor transponder integrated circuit (IC) working in the high frequency (HF) 13.56 MHz frequency band was selected for this study. A loop antenna was designed to make the reported sensor circuitry readable. Next, the sensor circuitry was fabricated and embedded into a PCB with the proposed technologies. Finally, properties of the embedded structures were examined as well-functional parameters of the sensor circuitries. Findings The described investigation results confirmed that the proposed technologies using an epoxy resin or standard materials used for PCB’s production allowed to successfully produce sensors embedded into PCBs. This technology did not have a negative significant impact either on quality of solder joints of the assembled transponder IC or on functional properties of the embedded sensor. Apart from the identification data, the reported sensor can provide information about a selected property of its environment, e.g. temperature when its internal temperature sensitive element is used or other factors with the use of external sensitive elements, such as humidity. Research limitations/implications It is planned to carry on the reported investigations to examine other types of sensor circuitries capable of indicating e.g. humidity level and to evaluate influence of the proposed technology on their functional properties. Practical implications The reported sensor circuitries can be successfully used in electronic industry in internet of things systems not only to identify monitored electronic devices, but also to control selected parameters of external environment. This creates opportunity to detect device malfunction by detecting local temperature growth or to analyze its environment, which might allow to predict failure of controlled products using radio waves. This advantage seems to be extremely beneficial for applications, such as space, aviation or military, in which embedded sensor systems may lead to enhancing reliability of electronic devices by reacting on occurred failures in a more efficient way. Originality/value This study demonstrates valuable information for engineers conducting research on sensor components embedded into PCBs. The reported technologies are quite simple and cost-effective because of the use of standard materials known for PCB’s production or an epoxy resin which could be treated as an additional encapsulant material enhancing mechanical properties of the embedded sensor transponder IC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.