The unprecedented global spread of COVID-19 has prompted dramatic public-health measures like strict stay-at-home orders and economic shutdowns. Some governments have resisted such measures in the hope that naturally acquired shield immunity could slow the spread of the virus. In the absence of empirical data about the effectiveness of these measures, policymakers must turn to epidemiological modelling to evaluate options for responding to the pandemic. This paper combines compartmental epidemiological models with the concept of behavioural dynamics from evolutionary game theory (EGT). This innovation allows us to model how compliance with an economic lockdown might wane over time, as individuals weigh the risk of infection against the certainty of the economic cost of staying at home. Governments can, however, increase spending on social programmes to mitigate the cost of a shutdown. Numerical analysis of our model suggests that emergency-relief funds spent at the individual level are effective in reducing the duration and overall economic cost of a pandemic. We also find that shield immunity takes hold in a population most easily when a lockdown is enacted with relatively low costs to the individual. Our qualitative analysis of a complex model provides evidence that the effects of shield immunity and economic shutdowns are complementary, such that governments should pursue them in tandem.
What do corruption, resource overexploitation, climate inaction, vaccine hesitancy, traffic congestion, and even cancer metastasis have in common? All these socioeconomic and sociobiological phenomena are known as social dilemmas because they embody in one form or another a fundamental conflict between immediate self-interest and long-term collective interest. A shortcut to the resolution of social dilemmas has thus far been reserved solely for highly stylised cases reducible to dyadic games (e.g., the Prisoner’s Dilemma), whose nature and outcome coalesce in the concept of dilemma strength. We show that a social efficiency deficit, measuring an actor’s potential gain in utility or fitness by switching from an evolutionary equilibrium to a social optimum, generalises dilemma strength irrespective of the underlying social dilemma’s complexity. We progressively build from the simplicity of dyadic games for which the social efficiency deficit and dilemma strength are mathematical duals, to the complexity of carcinogenesis and a vaccination dilemma for which only the social efficiency deficit is numerically calculable. The results send a clear message to policymakers to enact measures that increase the social efficiency deficit until the strain between what is and what could be incentivises society to switch to a more desirable state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.