Industrial Internet of Things (IIoT)-based systems have become an important part of industry consortium systems because of their rapid growth and wide-ranging application. Various physical objects that are interconnected in the IIoT network communicate with each other and simplify the process of decision-making by observing and analyzing the surrounding environment. While making such intelligent decisions, devices need to transfer and communicate data with each other. However, as devices involved in IIoT networks grow and the methods of connections diversify, the traditional security frameworks face many shortcomings, including vulnerabilities to attack, lags in data, sharing data, and lack of proper authentication. Blockchain technology has the potential to empower safe data distribution of big data generated by the IIoT. Prevailing data-sharing methods in blockchain only concentrate on the data interchanging among parties, not on the efficiency in sharing, and storing. Hence an element-based K-harmonic means clustering algorithm (CA) is proposed for the effective sharing of data among the entities along with an algorithm named underweight data block (UDB) for overcoming the obstacle of storage space. The performance metrics considered for the evaluation of the proposed framework are the sum of squared error (SSE), time complexity with respect to different m values, and storage complexity with CPU utilization. The results have experimented with MATLAB 2018a simulation environment. The proposed model has better sharing, and storing based on blockchain technology, which is appropriate IIoT.
PurposeOne of the foremost research disciplines in medical image processing is to identify tumors, which is a challenging task practicing traditional methods. To overcome this, various research studies have been done effectively.Design/methodology/approachMedical image processing is evolving swiftly with modern technologies being developed every day. The advanced technologies improve medical fields in diagnosing diseases at the more advanced stages and serve to provide proper treatment.FindingsEither the mass growth or abnormal growth concerning the cells in the brain is called a brain tumor.Originality/valueThe brain tumor can be categorized into two significant varieties, non-cancerous and cancerous. The carcinogenic tumors or cancerous is termed as malignant and non-carcinogenic tumors are termed benign tumors. If the cells in the tumor are healthy then it is a benign tumor, whereas, the abnormal growth or the uncontrollable growth of the cell is indicated as malignant. To find the tumor the magnetic resonance imaging (MRI) is carried out which is a tiresome and monotonous task done by a radiologist. In-order to diagnosis the brain tumor at the initial stage effectively with improved accuracy, the computer-aided robotic research technology is incorporated. There are numerous segmentation procedures, which help in identifying tumor cells from MRI images. It is necessary to select a proper segmentation mechanism to detect brain tumors effectively that can be aided with robotic systems. This research paper focuses on self-organizing map (SOM) by applying the adaptive network-based fuzzy inference system (ANFIS). The execution measures are determined to employ the confusion matrix, accuracy, sensitivity, and furthermore, specificity. The results achieved conclusively explicate that the proposed model presents more reliable outcomes when compared to existing techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.