This study verified the environmental effectiveness of potentially less aggressive routes for the synthesis of poly(propylene/ethylene oxide) glycol (PPG). The analysis was developed in two stages. Firstly, the environmental performance of the conventional PPG processing route was compared to alternative variants—vegetal PPG and CO2-based PPG—applying the life cycle assessment technique to measure the primary energy demand, global warming potential, acidification, photochemical oxidation, and freshwater ecotoxicity impact categories. The synthesis of vegetable polyols from bio-based assets, such as vegetable oils, and the application of CO2 conversion routes as an alternative to technologies supported by petroleum and natural gas were studied. The use of CO2 recovered through carbon capture and usage practices resulted in environmental gains for PPG production. The processing routes within vegetal assets were not an environmentally attractive option as the performance was worse than the conventional arrangement by 144% for the global warming impact category, an increase related to the deforestation carried out to expand soybean cultivation in Brazil. Secondly, improvement scenarios to mitigate the environmental impacts of alternative routes were performed. The hypothesis of using cleaner inputs to obtain a more ecofriendly route was tested. The analysis concluded that the use of high-purity CO2 brings fewer benefits compared to other capturing sources that need a purification process before feeding the PPG synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.