The broad availability of tools for the acquisition and processing of multimedia signals has recently led to the concern that images and videos cannot be considered a trustworthy evidence, since they can be altered rather easily. This possibility raises the need to verify whether a multimedia content, which can be downloaded from the internet, acquired by a video surveillance system, or received by a digital TV broadcaster, is original or not. To cope with these issues, signal processing experts have been investigating effective video forensic strategies aimed at reconstructing the processing history of the video data under investigation and validating their origins. The key assumption of these techniques is that most alterations are not reversible and leave in the reconstructed signal some "footprints", which can be analyzed in order to identify the previous processing steps. This paper presents an overview of the video forensic techniques that have been proposed in the literature, focusing on the acquisition, compression, and editing operations, trying to highlight strengths and weaknesses of each solution. It also provides a review of simple processing chains that combine different operations. Anti-forensic techniques are also considered to outline the current limitations and highlight the open research issues
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.