Giant cell tumour of bone (GCT) is an aggressive primary neoplasm that results in the production of osteolytic lesions. Stromal cells, which form the main neoplastic component of this tumor, regulate the formation of osleoclast-like giant cells that are ultimately responsible for bone destruction. Bisphosphonates prevent bone resorption by inhibiting osteoclast activity and promoting osteoclast apoptosis, and they have been known to induce apoptosis of primary neoplastic cells such as those in breast and prostate cancers. We hypothesized that in bisphosphonates may induce apoptosis not only in osteoclast-like giant cells but also in neoplastic stromal cells of GCT both in vitro and in vivo. Twelve patients with GCT were treated with weekly injections of pamidronate for a period of 6 weeks prior to surgery. GCT specimens were collected at the time of biopsy and during definitive surgery. TUNEL assay was used to evaluate apoptotic DNA fragmentation in cells. In addition, twelve GCT primary cultures from these patients were treated with zoledronate, pamidronate, or alendronate for 48 hours at different doses (3, 30, or 150 microM) and subjected to apoptosis assay by flow cytometry following fluorescent Annexin-V labeling. The results showed that pamidronate significantly induced apoptosis in both osteoclast-like giant cells and stromal tumor cells, in vivo. All three bisphosphonates caused substantial apoptosis of stromal tumor cells in cultures. Zoledronate was the most potent reagent, resulting in an average cell death of 27.41% at 150 microM, followed by pamidronate (22.23%) and alendronate (15.3%). Our observations suggest that these drugs may be considered as potential adjuvants in the treatment of GCT.
Osteopenia may be an important risk factor in curve progression. The measurement of bone mineral density at the time of diagnosis may serve as an additional objective measurement in predicting curve progression in adolescent idiopathic scoliosis. The bone mineral density-inclusive predictive model may be used in treatment planning for patients with adolescent idiopathic scoliosis who are at high risk of curve progression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.