Abstract:The shelf life of pure amorphous sucrose systems, such as cotton candy, can be very short. Previous studies have shown that amorphous sucrose systems held above the glass transition temperature will collapse and crystallize. One study, however, showed that adding a small percent of another type of sugar, such as trehalose, to sucrose can extend the shelf life of the amorphous system by slowing crystallization. This study explores the hypothesis that raffinose increases the stability of an amorphous sucrose system. Cotton candy at 5 wt% raffinose and 95 wt% sucrose was made and stored at room temperature and three different relative humidities (%RH) 11%RH, 33%RH, and 43%RH. XRD patterns, and glass transition temperatures were obtained to determine the stability as a function of %RH. The data collected showed that raffinose slows sucrose crystallization in a low moisture amorphous state above the glass transition temperature and therefore improves the stability of amorphous sucrose systems.
Pasteurization or sterilization of food and bioproducts is mostly performed using heat exchangers in countercurrent flow. The lack of appropriate analytic solutions for temperature profiles in the heating and cooling sections of such processes is most likely the main reason for the traditional cautious approach of disregarding the contribution of these stages in the total thermal history calculation. This approach leads to excessive thermal abuse of the product. The current manuscript describes the derivation and validation of an analytic solution for the temperature profiles within a double-pipe heat exchanger with countercurrent turbulent flow of Newtonian fluids, at any possible flow rate and not necessarily assuming an isothermal heating medium or coolant. The presented solution is based on application of the "heat exchanger effectiveness" concept in a partial heat exchanger, and can be easily solved and plotted using a spreadsheet. An interactive Excel TM workbook was developed for fast prediction of temperature profiles and used in a simulated case study to demonstrate the influence of operating conditions on the temperature profile and thermal history of a pasteurized liquid product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.