It is shown that exchange interactions in the two-dimensional electron gas in quantum wells could cause observable effects on subband energies and intersubband transition energies. In the case of doped quantum wells, the intrasubband exchange interaction can produce an energy shift which is substantially larger than the direct Coulomb energy shift. Theoretical estimates of such shifts are compared with experimental measurements of the infrared photoconductivity of multiple quantum well AlGaAs/GaAs structures with wells doped at about 1018 cm−3.
We demonstrate that a random scattering reflector on top of a quantum well infrared photodetector increases the optical coupling (i.e., increases the infrared absorption, responsivity, and detectivity) by an order of magnitude compared with a one-dimensional grating or 45° angle of incidence geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.