We report on a clear solar-cycle variation of the Sun’s shadow in the 10 TeV cosmic-ray flux observed by the Tibet air shower array during a full solar cycle from 1996 to 2009. In order to clarify the physical implications of the observed solar cycle variation, we develop numerical simulations of the Sun’s shadow, using the potential field source surface model and the current sheet source surface (CSSS) model for the coronal magnetic field. We find that the intensity deficit in the simulated Sun’s shadow is very sensitive to the coronal magnetic field structure, and the observed variation of the Sun’s shadow is better reproduced by the CSSS model. This is the first successful attempt to evaluate the coronal magnetic field models by using the Sun’s shadow observed in the TeV cosmic-ray flux.
We examine the possible influence of Earth-directed coronal mass ejections (ECMEs) on the Sun’s shadow in the 3 TeV cosmic-ray intensity observed by the Tibet-III air shower (AS) array. We confirm a clear solar-cycle variation of the intensity deficit in the Sun’s shadow during ten years between 2000 and 2009. This solar-cycle variation is overall reproduced by our Monte Carlo (MC) simulations of the Sun’s shadow based on the potential field model of the solar magnetic field averaged over each solar rotation period. We find, however, that the magnitude of the observed intensity deficit in the Sun’s shadow is significantly less than that predicted by MC simulations, particularly during the period around solar maximum when a significant number of ECMEs is recorded. The χ
2 tests of the agreement between the observations and the MC simulations show that the difference is larger during the periods when the ECMEs occur, and the difference is reduced if the periods of ECMEs are excluded from the analysis. This suggests the first experimental evidence of the ECMEs affecting the Sun’s shadow observed in the 3 TeV cosmic-ray intensity.
We obtained new upper limits on the diffuse gamma rays from the inner Galactic (IG) and outer Galactic (OG) planes in 3-10 TeV region, using the Tibet air shower data and new Monte Carlo simulation results. A difference of the effective area of the air-shower array for observing gamma rays and cosmic rays was carefully taken into account in this analysis, resulting in that the flux upper limits of the diffuse TeV gamma rays were reduced by factors of 4.0-3.7 for 3-10 TeV than those in our previous results (Amenomori, M., Ayabe, S., Cui, S.W., et al. Observation of multi-TeV diffuse gamma rays from the Galactic plane with the Tibet air shower array. Astrophys. J. 580, 887-895, 2002.). This new result suggests that the inverse power index of the energy spectrum of source electrons responsible for generating diffuse TeV gamma rays through inverse Compton effect should be steeper than 2.2 and 2.1 for IG and OG planes, respectively, with 99%C.L.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.