In this work, we investigate the the problem of an unsteady tank drainage while considering an isothermal and incompressible Ellis fluid. Exact solution is gotten for a resulting non-linear PDE (partial differential equation)subject to proper boundary conditions-. The special cases such as Newtonian, Power law, and as well as Bingham solution are retrieved from this suggested model of Ellis fluid. Expressions for velocity profile, shear stress on the pipe, volume flux, average velocity, and the relationship between the time vary with the depth of a tank and the time required for complete drainage are obtained. Impacts of different developing parameters on velocity profile vz and depth H(t) are illustrated graphically. The analogy of the Ellis, power law, Newtonian, and Bingham Plastic fluids for the relation of depth with respect to time, unfold that the tank can be empty faster for Ellis fluid as compared to its special cases.
In this study, an unsteady flow for drainage through a circular tank of an isothermal and incompressible Newtonian magnetohydrodynamic (MHD) fluid has been investigated. The series solution method is employed, and an analytical solution is obtained. Expressions for the velocity field, average velocity, flow rate, fluid depth at different times in the tank and time required for the wide-ranging drainage of the fluid (time of efflux) have been obtained. The Newtonian solution is attained by assuming σΒ02=0. The effects of various developing parameters on velocity field υz and depth of fluid H(t) are presented graphically. The time needed to drain the entire fluid and its depth are related and such relations are obtained in closed form. The effect of electromagnetic forces is analyzed. The fluid in the tank will drain gradually and it will take supplementary time for complete drainage.
Abstract:In this work, the theoretical study of steady flow for lift and drainage of Power law MHD fluid on a vertical cylinder is presented. The governing nonlinear differential equation has been derived from the momentum equation. The resulting equation is then solved using Perturbation method. Series solutions have been obtained for velocity, flow rate and average velocity in both cases. The graphical results for velocity profile is discussed and examined for different parameters of interest. Without MHD our problem reduces to well known Newtonian and Power law problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.