Mathematical modeling with computer application is becoming more and more popular in study, development of setup, maintenance of induction heating process. It can be used to explain, demonstrate and predict the process performance of induction hardening system. Different methods used to solve the field problems. In this paper, an effective Taguchi methodology has been utilized for selection of optimum process parameters of induction hardening of EN8 D steel. Various parameters such as power and heating time have been explored by experimentation. An orthogonal array, L9 , analysis variance of ANOVA are applied study the performance characteristic of induction hardening process. Hardness has been considered as performance characteristic. Analysis of variance (ANOVA) of response variable shows a significant influence of process variables i.e. power and heating time. The experimental results shows that the predicted mathematical models suggested could describe the performance characteristics within the limits of the factors being investigated .The results of regression equations have been verified by confirmation tests. Also microstructure analysis is done for justification of hardening work.
If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.
About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.
AbstractThe concept of virtual cellular manufacturing systems (VCMS) is finding acceptance among researchers and practitioners as an extension to group technology. This paper is related to a research work which resulted in designing and developing VCMS, which by virtue of its abilities proves to be attractive to manufacturing organisations fitting into the category of SMEs. VCMS consists of enterprise modeller (EM), cell design manager (CDM), cell operation manager (COM), simulator (SIM), performance evaluator (PE) and report generator (REP). The``cell design manager'' is a very important constituent of the VCMS, as this module helps to generate a number of cell configurations using different algorithms. A new algorithm styled as``Better alternative to ROC (BETROC)'', which possesses many distinct features to generate a number of alternative solutions, has been developed and reported in this paper.
Electronic accessThe current issue and full text archive of this journal is available at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.