The presence of phytoplasmas and their associated diseases is an emerging threat to vegetable production which leads to severe yield losses worldwide. Phytoplasmas are phloem-limited pleomorphic bacteria lacking the cell wall, mainly transmitted through leafhoppers but also by plant propagation materials and seeds. Phytoplasma diseases of vegetable crops are characterized by symptoms such as little leaves, phyllody, flower virescence, big buds, and witches’ brooms. Phytoplasmas enclosed in at least sixteen different ribosomal groups infecting vegetable crops have been reported thus far across the world. The aster yellows phytoplasma group (16SrI) is presently the prevalent, followed by the peanut witches’ broom (16SrII). Wide and overlapping crop and non-crop host ranges of phytoplasmas, polyphagous insect vectors, limited availability of resistance sources and unavailability of environmentally safe chemical control measures lead to an arduous effort in the management of these diseases. The most feasible control of vegetable phytoplasma diseases is a consequence of the development and implementation of integrated disease management programs. The availability of molecular tools for phytoplasma identification at the strain level greatly facilitated this kind of approach. It is moreover essential to understand the molecular basis of phytoplasma-vector interaction, epidemiology and other factors involved in disease development in order to reduce the disease outbreaks. Information on the knowledge about the most widespread phytoplasma diseases in vegetable crops is reviewed here in a comprehensive manner.
Despite the importance of okra, as one of the important vegetable crop, very little attention has been paid to its genetic improvement using advanced biotechnological tools. The exploitation of marker assisted breeding in okra is often limited due to the availability of a few molecular markers, the absence of molecular genetic-map(s), and other molecular tools. Chromosome linkage-groups were not yet constructed for this crop and reports on marker development are very scanty and mostly hovering around cultivar characterization. Besides, very little progress has been observed for transgenic development. However, high throughput biotechnological tools like chromosome engineering, RNA interference (RNAi), marker-assisted recurrent selection (MARS), genome-wide selection (GWS), targeted gene replacement, next generation sequencing (NGS), and nanobiotechnology can provide a rapid way for okra improvement. Further, the etiology of many deadly viral diseases like the yellow vein mosaic virus (YVMV) and okra enation leaf curl virus (OELCV) in okra is broadly indistinct and has been shown to be caused by various begomovirus species. These diseases cause systemic infections and have a very effective mode of transmission; thus, preventing their spread has been very complicated. Biotechnological interventions have the potential to enhance okra production even under different viral-stress conditions. In this background, this review deals with the biotechnological advancements in okra per se along with the begomoviruses infecting okra, and special emphasis has been laid on the exploitation of advanced genomic tools for the development of resistant varieties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.