SummaryHigh bone mineral density on routine dual energy X-ray absorptiometry (DXA) may indicate an underlying skeletal dysplasia. Two hundred fifty-eight individuals with unexplained high bone mass (HBM), 236 relatives (41% with HBM) and 58 spouses were studied. Cases could not float, had mandible enlargement, extra bone, broad frames, larger shoe sizes and increased body mass index (BMI). HBM cases may harbour an underlying genetic disorder.IntroductionHigh bone mineral density is a sporadic incidental finding on routine DXA scanning of apparently asymptomatic individuals. Such individuals may have an underlying skeletal dysplasia, as seen in LRP5 mutations. We aimed to characterize unexplained HBM and determine the potential for an underlying skeletal dysplasia.MethodsTwo hundred fifty-eight individuals with unexplained HBM (defined as L1 Z-score ≥ +3.2 plus total hip Z-score ≥ +1.2, or total hip Z-score ≥ +3.2) were recruited from 15 UK centres, by screening 335,115 DXA scans. Unexplained HBM affected 0.181% of DXA scans. Next 236 relatives were recruited of whom 94 (41%) had HBM (defined as L1 Z-score + total hip Z-score ≥ +3.2). Fifty-eight spouses were also recruited together with the unaffected relatives as controls. Phenotypes of cases and controls, obtained from clinical assessment, were compared using random-effects linear and logistic regression models, clustered by family, adjusted for confounders, including age and sex.ResultsIndividuals with unexplained HBM had an excess of sinking when swimming (7.11 [3.65, 13.84], p < 0.001; adjusted odds ratio with 95% confidence interval shown), mandible enlargement (4.16 [2.34, 7.39], p < 0.001), extra bone at tendon/ligament insertions (2.07 [1.13, 3.78], p = 0.018) and broad frame (3.55 [2.12, 5.95], p < 0.001). HBM cases also had a larger shoe size (mean difference 0.4 [0.1, 0.7] UK sizes, p = 0.009) and increased BMI (mean difference 2.2 [1.3, 3.1] kg/m2, p < 0.001).ConclusionIndividuals with unexplained HBM have an excess of clinical characteristics associated with skeletal dysplasia and their relatives are commonly affected, suggesting many may harbour an underlying genetic disorder affecting bone mass.Electronic supplementary materialThe online version of this article (doi:10.1007/s00198-011-1603-4) contains supplementary material, which is available to authorized users.
Many genes in the central region of the major histocompatibility complex (MHC) encode proteins involved in immune and inflammatory responses. In this study, we have further characterized two genes in the MHC class IV region, leucocyte-specific transcript (LST) 1 and natural cytotoxicity-triggering receptor 3 (NCR3) (also known as 1C7 and natural killer (NK)p30). The specific function of LST1 is not known, although expression analysis and functional data suggest an immunomodulatory role. The LST1 gene undergoes extensive alternative splicing, giving rise to both membrane-bound (encoded by exon 3) and soluble isoforms. The NCR3 protein is involved in NK-mediated cytotoxicity and plays a role in NK/dendritic cell crosstalk. Expression of these genes was examined, by real-time reverse transcriptase-polymerase chain reaction, in autoimmune-induced inflammation, specifically rheumatoid-arthritis-affected blood and synovium, and in response to stimulation with inflammatory mediators and bacterial agents. The expression of LST1, specifically splice variants encoding soluble isoforms and NCR3, was increased in rheumatoid-arthritis-affected blood and synovium and was associated with more severe inflammation in the synovium. Furthermore, both genes were significantly up-regulated in response to lipopolysaccharide, interferon (IFN)-gamma and bacterial infection. These findings suggest that NCR3 and soluble isoforms of LST1 may play a role in inflammatory and infectious diseases.
Lymphotoxin-Beta (LT-Beta) is implicated in lymphoid follicle development, production of pro-inflammatory cytokines, and can enhance the proliferation of fibroblasts and synoviocytes. The objective of this study was to investigate LT-Beta and LT-BetaReceptor (LT-BetaR) gene expression in RA patient synovium and blood samples compared with control individuals, and correlate with LT-Alpha and TNF-Alpha gene expression and disease parameters. RT-PCR was used to investigate the gene expression of LT-Beta, LT-BetaR, TNF-Alpha and LT-Alpha in the blood and synovium of RA patients and a control group of individuals. LT-Beta gene expression was significantly higher in RA patient synovium compared to control synovium (P = 0.005). There was a significant positive correlation between LT-Beta and LT-Alpha gene expression in both the synovium (P = 0.001) and blood (P = 0.002) of RA patients. LT-Beta gene expression was significantly higher in RA patient synovial samples that were inflamed to a moderately severe degree compared to those inflamed to a minimal degree (P = 0.02). Analysis of clinical variables revealed a significant positive correlation between LT-BetaR gene expression in RA patient synovium and Pain VAS Score (P = 0.01) and also HAQ Score (P = 0.01). Increased LT-Beta gene expression occurs in RA synovium and correlates with the degree of inflammation. LT-Beta may play a role in RA disease pathogenesis by contributing to a more intense inflammatory reaction in the synovium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.