| Immunotherapy is associated with durable clinical benefit in patients with melanoma. The goal of this article is to provide evidence-based consensus recommendations for the use of immunotherapy in the clinical management of patients with high-risk and advanced-stage melanoma in the USA. To achieve this goal, the Society for Immunotherapy of Cancer sponsored a panel of melanoma experts-including physicians, nurses, and patient advocates-to develop a consensus for the clinical application of tumour immunotherapy for patients with melanoma. The Institute of Medicine clinical practice guidelines were used as a basis for this consensus development. A systematic literature search was performed for high-impact studies in English between 1992 and 2012 and was supplemented as appropriate by the panel. This consensus report focuses on issues related to patient selection, toxicity management, clinical end points and sequencing or combination of therapy. The literature review and consensus panel voting and discussion were used to generate recommendations for the use of immunotherapy in patients with melanoma, and to assess and rate the strength of the supporting evidence. From the peer-reviewed literature the consensus panel identified a role for interferon-α2b, pegylated-interferon-α2b, interleukin-2 (IL-2) and ipilimumab in the clinical management of melanoma. Expert recommendations for how to incorporate these agents into the therapeutic approach to melanoma are provided in this consensus statement. Tumour immunotherapy is a useful therapeutic strategy in the management of patients with melanoma and evidence-based consensus recommendations for clinical integration are provided and will be updated as warranted.
SummaryHigh bone mineral density on routine dual energy X-ray absorptiometry (DXA) may indicate an underlying skeletal dysplasia. Two hundred fifty-eight individuals with unexplained high bone mass (HBM), 236 relatives (41% with HBM) and 58 spouses were studied. Cases could not float, had mandible enlargement, extra bone, broad frames, larger shoe sizes and increased body mass index (BMI). HBM cases may harbour an underlying genetic disorder.IntroductionHigh bone mineral density is a sporadic incidental finding on routine DXA scanning of apparently asymptomatic individuals. Such individuals may have an underlying skeletal dysplasia, as seen in LRP5 mutations. We aimed to characterize unexplained HBM and determine the potential for an underlying skeletal dysplasia.MethodsTwo hundred fifty-eight individuals with unexplained HBM (defined as L1 Z-score ≥ +3.2 plus total hip Z-score ≥ +1.2, or total hip Z-score ≥ +3.2) were recruited from 15 UK centres, by screening 335,115 DXA scans. Unexplained HBM affected 0.181% of DXA scans. Next 236 relatives were recruited of whom 94 (41%) had HBM (defined as L1 Z-score + total hip Z-score ≥ +3.2). Fifty-eight spouses were also recruited together with the unaffected relatives as controls. Phenotypes of cases and controls, obtained from clinical assessment, were compared using random-effects linear and logistic regression models, clustered by family, adjusted for confounders, including age and sex.ResultsIndividuals with unexplained HBM had an excess of sinking when swimming (7.11 [3.65, 13.84], p < 0.001; adjusted odds ratio with 95% confidence interval shown), mandible enlargement (4.16 [2.34, 7.39], p < 0.001), extra bone at tendon/ligament insertions (2.07 [1.13, 3.78], p = 0.018) and broad frame (3.55 [2.12, 5.95], p < 0.001). HBM cases also had a larger shoe size (mean difference 0.4 [0.1, 0.7] UK sizes, p = 0.009) and increased BMI (mean difference 2.2 [1.3, 3.1] kg/m2, p < 0.001).ConclusionIndividuals with unexplained HBM have an excess of clinical characteristics associated with skeletal dysplasia and their relatives are commonly affected, suggesting many may harbour an underlying genetic disorder affecting bone mass.Electronic supplementary materialThe online version of this article (doi:10.1007/s00198-011-1603-4) contains supplementary material, which is available to authorized users.
The UK National Osteoporosis Society (NOS) has recently issued new guidelines on the use of peripheral x-ray absorptiometry (pDXA) devices in managing osteoporosis. The NOS guidelines recommend a triage approach in which patients' bone mineral density (BMD) measurements are interpreted using upper and lower thresholds specific to each type of pDXA device. The thresholds are defined so that patients with osteoporosis at the hip or spine are identified with 90% sensitivity and 90% specificity. Patients with a pDXA result below the lower threshold are likely to have osteoporosis at the hip or spine, patients with a result above the upper threshold are unlikely to have osteoporosis, while those between the two thresholds require a hip and spine BMD examination for a definitive diagnosis. This report presents data from a multicenter study to establish the triage thresholds for a range of pDXA devices in use in the UK. The subjects were white female patients aged 55-70 years who met the normal referral criteria for a BMD examination. For each device, at least 70 women with osteoporosis at the hip or spine and 70 women without osteoporosis were enrolled. All women had hip and spine BMD measurements using axial DXA systems that were interpreted using the National Health and Nutrition Examination Survey (NHANES) reference range for the hip and the manufacturers' reference ranges for the spine. Data are presented for five different devices: the Osteometer DTX-200 (forearm BMD), the Schick AccuDEXA (hand BMD), the GE Lunar PIXI (heel BMD), the Alara MetriScan (hand BMD), and the Demetech Calscan (heel BMD). The clinical measurements were supplemented by theoretical modeling to estimate the age dependence of the triage thresholds and the effect of the correlation coefficient between pDXA and axial BMD on the percentage of women referred for an axial BMD examination. In summary, this study provides thresholds for implementing the new NOS guidelines for managing osteoporosis using pDXA devices. The figures reported apply to postmenopausal white women aged 55-70 years who meet the conventional criteria for a BMD examination. The results confirm that the thresholds are specific to each type of pDXA device and that the NOS triage algorithm requires 40% of women to have an axial DXA examination.
Context:High bone mass (HBM), detected in 0.2% of dual-energy x-ray absorptiometry (DXA) scans, is characterized by raised body mass index, the basis for which is unclear.Objective:To investigate why body mass index is elevated in individuals with HBM, we characterized body composition and examined whether differences could be explained by bone phenotypes, eg, bone mass and/or bone turnover.Design, Setting, and Participants:We conducted a case-control study of 153 cases with unexplained HBM recruited from 4 UK centers by screening 219 088 DXA scans. A total of 138 first-degree relatives (of whom 51 had HBM) and 39 spouses were also recruited. Unaffected individuals served as controls.Main Outcome Measures:We measured fat mass, by DXA, and bone turnover markers.Results:Among women, fat mass was inversely related to age in controls (P = .01), but not in HBM cases (P = .96) in whom mean fat mass was 8.9 [95% CI 4.7, 13.0] kg higher compared with controls (fully adjusted mean difference, P < .001). Increased fat mass in male HBM cases was less marked (gender interaction P = .03). Compared with controls, lean mass was also increased in female HBM cases (by 3.3 [1.2, 5.4] kg; P < .002); however, lean mass increases were less marked than fat mass increases, resulting in 4.5% lower percentage lean mass in HBM cases (P < .001). Osteocalcin was also lower in female HBM cases compared with controls (by 2.8 [0.1, 5.5] μg/L; P = .04). Differences in fat mass were fully attenuated after hip bone mineral density (BMD) adjustment (P = .52) but unchanged after adjustment for bone turnover (P < .001), whereas the greater hip BMD in female HBM cases was minimally attenuated by fat mass adjustment (P < .001).Conclusions:HBM is characterized by a marked increase in fat mass in females, statistically explained by their greater BMD, but not by markers of bone turnover.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.