Oxidative stress is associated with important pathophysiological events in a variety of diseases. It has been postulated that free radicals and lipid peroxidation products generated during the process may be responsible for these effects because of their ability to damage cellular components such as membranes, proteins, and DNA. In the present study, we provide evidence that oxidative stress causes a transient impairment of intracellular proteolysis via covalent binding of 4-hydroxy-2-nonenal (HNE), a major end product of lipid peroxidation, to proteasomes. A single intraperitoneal treatment with the renal carcinogen, ferric nitrilotriacetate, caused oxidative stress, as monitored by accumulation of lipid peroxidation products and 8-hydroxy-2-deoxyguanosine, in the kidney of mice. In addition, transient accumulation of HNE-modified proteins in the kidney was also found by competitive enzyme-linked immunosorbent assay and immunohistochemical analyses. This and the observation that the HNE-modified proteins were significantly ubiquitinated suggested a crucial role of proteasomes in the metabolism of HNE-modified proteins. In vitro incubation of the kidney homogenates with HNE indeed resulted in a transient accumulation of HNE-modified proteins, whereas the proteasome inhibitor significantly suppressed the timedependent elimination of HNE-modified proteins. We found that, among three proteolytic activities (trypsin, chymotrypsin, and peptidylglutamyl peptide hydrolase activities) of proteasomes, both trypsin and peptidylglutamyl peptide hydrolase activities in the kidney were transiently diminished in accordance with the accumulation of HNE-modified proteins during oxidative stress. The loss of proteasome activities was partially ascribed to the direct attachment of HNE to the protein, based on the detection of HNE-proteasome conjugates by an immunoprecipitation technique. These results suggest that HNE may contribute to the enhanced accumulation of oxidatively modified proteins via an impairment of ubiquitin/proteasome-dependent intracellular proteolysis.
Protective effects of curcumin (U1), one of the major yellow pigments in turmeric and its derivative, tetrahydrocurcumin (THU1), against ferric nitrilotriacetate (Fe-NTA)-induced oxidative renal damage were studied in male ddY mice. Single Fe-NTA treatment (5 mg Fe/kg body intraperitoneally) transiently causes oxidative stress, as shown by the accumulation of lipid peroxidation products and 8-hydroxy-2'-deoxyguanosine in the kidney. Mice were fed with a diet containing 0.5 g/100 g U1 or THU1 for 4 wk. THU1 significantly inhibited 2-thiobarbituric acid reactive substances and 4-hydroxy-2-nonenal-modified proteins and 8-hydroxy-2'-deoxyguanosine formation in the kidney; U1 inhibited only 4-hydroxy-2-nonenal-modified protein formation. To elucidate the mechanisms of protection by U1 and THU1, the pharmacokinetics and radical-scavenging capacities of U1 and THU1 were investigated by HPLC and electron spin resonance spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide, respectively. Induction of antioxidant enzymes was also investigated. The amounts of THU1 and its conjugates (as sulfates and glucuronides) in the liver and serum were larger in the THU1 group than in the U1 group. The amounts of U1 and its conjugates were small even in the U1 group. These results suggest that THU1 is more easily absorbed from the gastrointestinal tract than U1. Furthermore, THU1 induced antioxidant enzymes, such as glutathione peroxidase, glutathione S-transferase and NADPH: quinone reductase, as well as or better than U1 and scavenged Fe-NTA-induced free radicals in vitro better than U1. These results suggest that U1 is converted to THU1 in vivo and that THU1 is a more promising chemopreventive agent.
Ratios of urinary 8-hydroxy-2'-deoxyguanosine to urinary creatinine (8-OHdG/creatinine) have been considered as a good biological indicator of DNA oxidation. Urinary 8-OHdG/ creatinine levels of lung cancer patients were evaluated by enzyme-linked iramunosorbent assay using a monoclonal antibody N45.1 during radiotherapy and chemotherapy. An increase in urinary 8-OHdG/creatinine was found in non-small-cell carcinoma (non-SCC) patients during the course of radiotherapy. SCC patients showed higher levels of urinary 8-OHdG/creatinine than the controls. Furthermore, SCC patients with complete or partial response to the chemotherapy showed a significant decrease in urinary 8-OHdG/creatinine while patients with no change or progressive disease showed an increase.
Chewing ability is associated with not only oral health status but also the physical constitution of the elderly. In addition, chewing ability may add to the regulation of the nutritional status in the elderly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.