The Photodetector Array Camera and Spectrometer (PACS) is one of the three science instruments on ESA's far infrared and submillimetre observatory. It employs two Ge:Ga photoconductor arrays (stressed and unstressed) with 16 × 25 pixels, each, and two filled silicon bolometer arrays with 16 × 32 and 32 × 64 pixels, respectively, to perform integral-field spectroscopy and imaging photometry in the 60−210 μm wavelength regime. In photometry mode, it simultaneously images two bands, 60−85 μm or 85−125 μm and 125−210 μm, over a field of view of ∼1.75 × 3.5 , with close to Nyquist beam sampling in each band. In spectroscopy mode, it images a field of 47 × 47 , resolved into 5 × 5 pixels, with an instantaneous spectral coverage of ∼ 1500 km s −1 and a spectral resolution of ∼175 km s −1 . We summarise the design of the instrument, describe observing modes, calibration, and data analysis methods, and present our current assessment of the in-orbit performance of the instrument based on the performance verification tests. PACS is fully operational, and the achieved performance is close to or better than the pre-launch predictions. Key words. space vehicles: instruments -instrumentation: photometers -instrumentation: spectrographsHerschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.
We report far-infrared and submillimeter observations of supernova 1987A, the star whose explosion was observed on 23 February 1987 in the Large Magellanic Cloud, a galaxy located 160,000 light years away. The observations reveal the presence of a population of cold dust grains radiating with a temperature of about 17 to 23 kelvin at a rate of about 220 times the luminosity of the Sun. The intensity and spectral energy distribution of the emission suggest a dust mass of about 0.4 to 0.7 times the mass of the Sun. The radiation must originate from the supernova ejecta and requires the efficient precipitation of all refractory material into dust. Our observations imply that supernovae can produce the large dust masses detected in young galaxies at very high redshifts.
Aims. We use high-resolution continuum images obtained with the Atacama Large Millimeter Array (ALMA) to probe the surface density of star-formation in z∼2 galaxies and study the different physical properties between galaxies within and above the starformation main sequence of galaxies. Methods. We use ALMA images at 870 µm with 0.2 arcsec resolution in order to resolve star-formation in a sample of eight starforming galaxies at z∼2 selected among the most massive Herschel galaxies in the GOODS-South field. This sample is supplemented with eleven galaxies from the public data of the 1.3 mm survey of the Hubble Ultra-Deep Field, HUDF. We derive dust and gas masses for the galaxies, compute their depletion times and gas fractions and study the relative distributions of rest-frame UV and far-infrared light.Results. ALMA reveals systematically dense concentrations of dusty star-formation close to the center of the stellar component of the galaxies. We identify two different starburst regimes: (i) the classical population of starbursts located above the SFR-M ⋆ main sequence, with enhanced gas fractions and short depletion times and (ii) a sub-population of galaxies located within the scatter of the main sequence that experience compact star formation with depletion timescales typical of starbursts of ∼150 Myr. In both starburst populations, the far infrared and UV are distributed in distinct regions and dust-corrected star formation rates estimated using UVoptical-NIR data alone underestimate the total star formation rate. Starbursts hidden in the main sequence show instead the lowest gas fractions of our sample and could represent the last stage of star-formation prior to passivization. Being Herschel-selected, these main sequence galaxies are located in the high-mass end of the main sequence, hence we do not know whether these "starbursts hidden in the main sequence" also exist below 10 11 M ⊙ . Active galactic nuclei are found to be ubiquitous in these compact starbursts, suggesting that the triggering mechanism also feeds the central black hole or that the active nucleus triggers star formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.