When conventionally calculating carrier leakage for state-of-the-art quantum cascade lasers (QCLs), that is, LO-phonon-assisted leakage from the upper laser level via electron thermal excitation to high-energy active-region (AR) states, followed by relaxation to low-energy AR states, ∼18%-wide gaps were recently found between calculated and experimentally measured internal efficiency values. We incorporate elastic scattering [i.e., interface-roughness (IFR) and alloy-disorder scattering] into the carrier-leakage process and consider carrier leakage from key injector states as well. In addition, the expressions for LO-phonon and IFR-triggered carrier-leakage currents take into account the large percentage of thermally excited electrons that return back to initial states via both inelastic and elastic scattering. As a result, we find that the gaps between theoretical and experimental internal efficiency values are essentially bridged. Another finding is that, for the investigated state-of-the-art structures, IFR scattering causes the total carrier leakage to reach values as much as an order of magnitude higher than conventional inelastic scattering-only leakage. The developed formalism opens the way to significantly increase the internal efficiency (i.e., to more than 80%) via IFR-scattering engineering, such that maximum wall-plug efficiencies close to projected fundamental, both-facets values (e.g., 42% at λ = 4.6 μm) can be achieved. By employing this formalism, we reached a 4.6 μm-emitting-QCL preliminary design for suppressing IFR-triggered carrier leakage, which provides an internal efficiency of 86% as well as a projected single-facet wall-plug efficiency value of 36% at a heatsink temperature of 300 K.
Metalorganic chemical vapor deposition (MOCVD) growth of InP-based quantum cascade laser (QCL) structures on a Si (001) substrate is demonstrated by employing a metamorphic InP buffer layer with InAs/InP quantum dots as dislocation filters. Calibration samples consist of a strain-compensated 11.98 nm In 0.365 Al 0.635 As/14.8 nm In 0.64 Ga 0.36 As superlattice (SL) structure as well as 5-stages of the λ % 4.8 mm QCL active region, which are grown atop the metamorphic buffer and are used to assess the structural properties of the SL through high-resolution X-ray diffraction and high-resolution transmission electron microscopy. Full QCL structures with 40-stage active region are fabricated into edge-emitting ridge-waveguide structures and demonstrate low temperature electroluminescence with a FWHM of 48.6 meV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.