Genotyping sheep for genome-wide SNPs at lower density and imputing to a higher density would enable cost-effective implementation of genomic selection, provided imputation was accurate enough. Here, we describe the design of a low-density (12k) SNP chip and evaluate the accuracy of imputation from the 12k SNP genotypes to 50k SNP genotypes in the major Australian sheep breeds. In addition, the impact of imperfect imputation on genomic predictions was evaluated by comparing the accuracy of genomic predictions for 15 novel meat traits including carcass and meat quality and omega fatty acid traits in sheep, from 12k SNP genotypes, imputed 50k SNP genotypes and real 50k SNP genotypes. The 12k chip design included 12 223 SNPs with a high minor allele frequency that were selected with intermarker spacing of 50-475 kb. SNPs for parentage and horned or polled tests also were represented. Chromosome ends were enriched with SNPs to reduce edge effects on imputation. The imputation performance of the 12k SNP chip was evaluated using 50k SNP genotypes of 4642 animals from six breeds in three different scenarios: (1) within breed, (2) single breed from multibreed reference and (3) multibreed from a single-breed reference. The highest imputation accuracies were found with scenario 2, whereas scenario 3 was the worst, as expected. Using scenario 2, the average imputation accuracy in Border Leicester, Polled Dorset, Merino, White Suffolk and crosses was 0.95, 0.95, 0.92, 0.91 and 0.93 respectively. Imputation scenario 2 was used to impute 50k genotypes for 10 396 animals with novel meat trait phenotypes to compare genomic prediction accuracy using genomic best linear unbiased prediction (GBLUP) with real and imputed 50k genotypes. The weighted mean imputation accuracy achieved was 0.92. The average accuracy of genomic estimated breeding values (GEBVs) based on only 12k data was 0.08 across traits and breeds, but accuracies varied widely. The mean GBLUP accuracies with imputed 50k data more than doubled to 0.21. Accuracies of genomic prediction were very similar for imputed and real 50k genotypes. There was no apparent impact on accuracy of GEBVs as a result of using imputed rather than real 50k genotypes, provided imputation accuracy was >90%.
The present paper covers reproductive performance in an artificial-insemination (AI) program of the Sheep CRC Information Nucleus with 24 699 lambs born at eight locations in southern Australia across five lambings between 2007 and 2011. Results from AI with frozen semen compared well with industry standards for natural mating. Conception rates averaged 72%, and 1.45 lambs were born per ewe pregnant for Merino ewes and 1.67 for crossbreds. Lamb deaths averaged 21% for Merino ewes and 15% for crossbreds and 19%, 22% and 20% for lambs from ewes that were mated to terminal, Merino and maternal sire types, respectively. Net reproductive rates were 82% for Merino ewes and 102% for crossbreds. From 3198 necropsies across 4 years, dystocia and starvation-mismothering accounted for 72% of lamb deaths within 5 days of lambing. Major risk factors for lamb mortality were birth type (single, twin or higher order), birthweight and dam breed. Losses were higher for twin and triplet lambs than for singles and there was greater mortality at relatively lighter and heavier birthweights. We conclude that reproductive rate in this AI program compared favourably with natural mating. Lamb birthweight for optimum survival was in the 4–8-kg range. Crossbred ewes had greater reproductive efficiency than did Merinos.
BackgroundThe objectives of this study were to investigate the accuracy of genotype imputation from low (12k) to medium (50k Illumina-Ovine) SNP (single nucleotide polymorphism) densities in purebred and crossbred Merino sheep based on a random or selected reference set and to evaluate the impact of using imputed genotypes on accuracy of genomic prediction.MethodsImputation validation sets were composed of random purebred or crossbred Merinos, while imputation reference sets were of variable sizes and included random purebred or crossbred Merinos or a group of animals that were selected based on high genetic relatedness to animals in the validation set. The Beagle software program was used for imputation and accuracy of imputation was assessed based on the Pearson correlation coefficient between observed and imputed genotypes. Genomic evaluation was performed based on genomic best linear unbiased prediction and its accuracy was evaluated as the Pearson correlation coefficient between genomic estimated breeding values using either observed (12k/50k) or imputed genotypes with varying levels of imputation accuracy and accurate estimated breeding values based on progeny-tests.ResultsImputation accuracy increased as the size of the reference set increased. However, accuracy was higher for purebred Merinos that were imputed from other purebred Merinos (on average 0.90 to 0.95 based on 1000 to 3000 animals) than from crossbred Merinos (0.78 to 0.87 based on 1000 to 3000 animals) or from non-Merino purebreds (on average 0.50). The imputation accuracy for crossbred Merinos based on 1000 to 3000 other crossbred Merino ranged from 0.86 to 0.88. Considerably higher imputation accuracy was observed when a selected reference set with a high genetic relationship to target animals was used vs. a random reference set of the same size (0.96 vs. 0.88, respectively). Accuracy of genomic prediction based on 50k genotypes imputed with high accuracy (0.88 to 0.99) decreased only slightly (0.0 to 0.67 % across traits) compared to using observed 50k genotypes. Accuracy of genomic prediction based on observed 12k genotypes was higher than accuracy based on lowly accurate (0.62 to 0.86) imputed 50k genotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.