Our objective was to examine immunosuppression induced by dexamethasone (DEX) administration in cattle on immunological responses to a multivalent respiratory vaccine containing replicating and nonreplicating agents. Steers ( = 32; 209 ± 8 kg) seronegative to infectious bovine rhinotracheitis virus (IBRV), bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus (BRSV), and parainfluenza-3 virus (PI3V) were stratified by BW and randomly assigned to 1 of 3 treatments: 1) acute immunosuppression (ACU; 0.5 mg/kg BW DEX intravenously at 1000 h only on d 0), 2) chronic immunosuppression (CHR; 0.5 mg/kg BW DEX intravenously at 1000 h on d -3 to 0), or 3) a control (CON; no DEX). On d -4, steers were fitted with intravenous catheters in the jugular vein and placed into individual stanchions. At 1200 h on d 0, steers were administered a respiratory vaccine containing modified-live virus (MLV) isolates of IBRV, BVDV, BRSV, and PI3V and a (MH) toxoid. On d 4, cattle were transported (177 km) and housed in an isolated outdoor pen. Serum was harvested on d 0, 7, 14, 21, 28, 35, 42, and 56 to determine IBRV-, BVDV-, BRSV-, and PI3V-specific antibody titers and MH whole cell and leukotoxin antibody concentrations. Sera from d -2, 0, 1, 3, 7, and 14 were used to quantify haptoglobin (Hp) concentration and ceruloplasmin (Cp) activity. Nasal swab specimens were collected on d 0, 3, and 14 to determine the presence of IBRV, BVDV, BRSV, and PI3V via PCR analysis. There was a treatment × day interaction ( < 0.01) such that CHR steers had a greater ( ≤ 0.07) BVDV antibody titer on d 14, 21, and 28. Moreover, IBRV-specific antibodies increased beginning on d 14 for CHR and on d 28 for ACU and remained greater through d 56 compared with CON ( ≤ 0.03). Conversely, serum MH whole cell antibody concentration was least ( ≤ 0.06) for CHR from d 7 to 28 and greatest for CON ( ≤ 0.04) on d 56. Treatment altered Hp such that CON exhibited a greater ( < 0.01) Hp concentration than CHR but was not different from ACU ( = 0.16). On d 3, Cp was greatest for CON, intermediate for ACU, and least for CHR (treatment × day; ≤ 0.01). The prevalence of IBRV and BVDV in nasal swabs on d 14 was 67 and 56%, respectively, for CHR; 10 and 10%, respectively, for CON; and 9 and 0%, respectively, for ACU ( ≤ 0.006). Results suggest that CHR allowed increased replication of MLV vaccine agents. Conversely, DEX-induced immunosuppression blunted the acute phase protein and antibody response against the nonreplicating MH toxoid.
This study was designed to investigate the effects of supplementing SmartCare (SC; Diamond V, Cedar Rapids, IA) in milk replacer and Original XPC (XPC; Diamond V) in calf starter on performance and health of preweaned calves following an oral challenge with Salmonella enterica. The study was performed in two 35-d periods with 30 Holstein bull calves (2 ± 1 d of age) per period. In each period, calves were blocked by location in the barn and randomly assigned to treatments that included control, base milk replacer and calf starter with no added Saccharomyces cerevisiae fermentation products; SC, milk replacer with 1 g of SC/calf per day and base calf starter; and SC+XPC, milk replacer with 1 g of SC/calf per day and calf starter with 0.5% XPC on a dry matter basis. Calves were fed 350 g of milk replacer solids at 14% dry matter twice daily at 0700 and 1700 h. Calf starter and water were offered ad libitum and intakes were recorded daily. Calves were challenged with 108 cfu of sulfamethazine-resistant Salmonella enterica serotype Typhimurium orally on d 14 of the study. Fecal Salmonella shedding was determined on d 14 to 21 (daily), 24, 28, and 35 using selective media. Blood samples were collected on d 0, 7, 14, 16, 18, 21, 24, 28, and 35 and analyzed for hematology; plasma were analyzed for haptoglobin concentrations. All data were reported as CON, SC, and SC+XPC, respectively. Calf starter intake was increased from d 22 to 35 among SC+XPC calves and from d 29 to 35 among SC calves. The SC+XPC calves had a lower neutrophil-to-lymphocyte ratio (0.81, 0.83, and 0.69 ± 0.051) throughout the study. The SC+XPC calves also had lower hematocrits (35.1, 35.3, and 33.4 ± 0.54%) and hemoglobin concentrations (10.8, 10.6, and 10.1 ± 0.16 mg/dL) throughout the study. We found a tendency for calves fed SC and SC+XPC to have more solid fecal scores during the week after the challenge. We observed no treatment or treatment × time differences on plasma haptoglobin concentrations (63, 48, and 60 ± 0.5 μg/mL). No treatment differences were observed in the fecal shedding of the Salmonella; however, we noted a tendency for a treatment difference in the percentage of calves positive for Salmonella present in the ileal tissue at d 21 after the challenge (25, 50, and 60%). Supplementing preweaned Holstein calves with both SC in milk replacer and XPC in calf starter improved starter intake and improved fecal consistency immediately after a mild Salmonella enterica challenge, but more data are needed to further understand how these yeast fermentation products influence the immune responses to Salmonella enterica.
The objectives of this study were to determine whether plane of nutrition (PON) of milk replacer previously provided to calves, and dosage level of Mannheimia haemolytica (MH), influenced inflammatory responses to a combined viral-bacterial respiratory challenge. Holstein calves (1 d of age; n = 30) were assigned to treatments in a 2 × 3 factorial with preweaning PON and MH dose as main effects (n = 5 per treatment). Calves were fed either a low (LPN; n = 15) or a high PON (HPN; n = 15) from birth through weaning. Calves fed LPN were fed 436 g of dry matter (DM) per day of milk replacer until weaning, and HPN calves were fed 797 g of DM per day of milk replacer from d 1 to 10 and 1,080 g of DM per day from d 11 until weaning. Calf starter and water were offered ad libitum. Calves were step-down weaned beginning at d 54 and moved into an enclosed barn at d 70. Indwelling rectal temperature (RT) recording devices and jugular catheters were inserted at d 80. Calves were challenged with 1.5 × 10 8 plaque-forming units (pfu) per mL of bovine herpesvirus-1 (BHV-1) in each nostril at d 81 and with either 10 6 , 10 7 , or 10 8 cfu of MH at d 84. Blood samples were collected at varying intervals relative to BHV-1 and MH challenges. Four LPN calves either died or were euthanized soon after the 144-h observation period, whereas all HPN calves survived the entire observation period. As dosage of MH administered increased, acute and systemic inflammatory responses increased. Higher doses of MH resulted in increased leukocyte, neutrophil, and haptoglobin concentrations in infected calves. Data from the current study suggest that the highest dose, 10 8 cfu, triggered weaned calves' acute disease response, whereas the lower doses, 10 6 and 10 7 cfu, caused more moderate inflammation and disease. The effects of PON on inflammation responses to the disease challenge indicated that calves previously fed the LPN diet had more severe pathophysiological responses. Calves fed LPN showed higher peripheral neutrophil and leukocyte counts and serum haptoglobin concentrations following the BHV-1 challenge. Additionally, following the MH challenge, LPN calves had higher peripheral neutrophil counts, neutrophil-tolymphocyte ratios, and serum tumor necrosis factor-α concentrations. These data demonstrate that higher doses of MH increase the acute inflammatory response and prolong inflammation, and that calves previously fed LPN responded more severely to the combined viral-bacterial respiratory challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.