[1] This paper examines a hydrographic response to the wind-driven coastal polynya activity over the southeastern Laptev Sea shelf for April-May 2008, using a combination of Environmental Satellite (Envisat) advanced synthetic aperture radar (ASAR) and TerraSAR-X satellite imagery, aerial photography, meteorological data, and SBE-37 salinity-temperature-depth and acoustic Doppler current profiler land-fast ice edgemoored instruments. When ASAR observed the strongest end-of-April polynya event with frazil ice formation, the moored instruments showed maximal acoustical scattering within the surface mixed layer, and the seawater temperatures were either at or 0.02°C below freezing. We also find evidence of the persistent horizontal temperature and salinity gradients across the fast ice edge to have the signature of geostrophic flow adjustment as predicted by polynya models.
A detailed analysis of hydrographic data from a period of 20 years (1980−99) has shown that the persistent presence of a flaw polynya influences mesoscale hydrography of the Laptev Sea, Russian Arctic. Based on these data, the interannual variability of surface water salinity within the polynya has been estimated. As the salinity increase in the surface water layer is mainly caused by the formation of new ice within the polynya, the average ice-production rate of the polynya was calculated. The results indicate an ice production of 3−4 m per season. A further aim of this study was to calculate the probability that the convective mixing in the polynya penetrates to the sea-floor. It is demonstrated that the probability is maximal in the flaw-polynya area, but does not exceed 20% in the eastern and 70% in the western part of the polynya as a result of strong vertical density stratification from river runoff, especially in the eastern Laptev Sea. Additional studies of water circulation in the marginal zone of the flaw polynya were carried out during field observations in April-May 1999. On the basis of conductivity-temperature-depth and current measurements we deduce that high current velocities (62 cm s-1) recorded in surface waters near the fast-ice edge are caused by a convectively driven circulation system under the polynya. Our measurements indicate that these high-velocity currents are part of a cellular circulation, which results from the rejection of brine during intensive ice formation in the polynya. The observed azimuthal alignment of the crystalline structure of sea ice is also, most probably, the consequence of this quasi-stationary cellular circulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.