The paper is focused on scenario and terrain modeling using the results of aerial laser scanning combined with digital aerial photography. The advantages and disadvantages of these technologies are discussed in regard to the construction of large-scale topographic maps. The generalized sequence of cameral processing aerial survey data is investigated. Based on our research, we believe that developing a combined technique of presenting Lidar survey and aerial photography materials is feasible; it could simplify and speed up the operator`s (cartographer`s) work. The novelty of the research is the formation of algorithms for creating original raster images containing more information on the terrain in each section than the orthophotoplane familiar to the interested user. The criteria for the object composition of materials are worked out taking into account the specifics of the methods under consideration, variants of information combinations are formulated for broader opportunities of analyzing and interpreting the data on the territory. Various approaches to the implementation of these ideas are shown. Examples of testing developments are given.
Nowadays the latest non-contact methods and technologies for studying the forest fund are being developed for forest monitoring improvement, forest lands assessment and their cadastral registration. It is the use of airborne laser scanning (ALS) in forest inventory that is designed to solve the challenges forest management facing. Laser scanning is the only method of collecting data on the real surface covered with forest vegetation, which allows to obtain data on the shape, location and reflectivity of the studied forest objects. The result of ALS is a 3D array of laser reflections with a density of up to several dozens of points per 1 m2 and accuracy of determining their coordinates of less than 10 cm in plan and height. Various imported scanning systems are used for surveying. The ALS of the Earth’s vegetation cover is superior to all existing technologies for assessing the quantitative and qualitative parameters of forest stands in a set of characteristics. This method of assessment and inventory of forests has no competitors in the field of monitoring and valuation of forest stands. It also has sufficient accuracy in mapping woody vegetation, up to the tree survey of forested lands. The article proposes a method for determining valuation indicators: species composition, density, stock, height and diameter of forest stands according to the results of ALS in the forest area of the Vsevolozhsk district (Leningrad region). The species composition and density were determined by horizontal projections of tree crowns. The heights of the trees were determined using the Global Mapper software, and their average diameter was found using the diameter and height relationship equations known in forest valuation. The planting stock was calculated using the equations of Dementiev, Dentsin and G. Cuvier. It was found that the results of determining the valuation indicators by means of ALS can be used in forest monitoring along with the data of visual valuation, since the obtained information on the forest stand stays within the limits of permissible errors specified in the forest management instruction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.