We studied simultaneously the 4 He(e, e p), 4 He(e, e pp), and 4 He(e, e pn) reactions at Q 2 = 2 (GeV/c) 2 and xB > 1, for an (e, e p) missing-momentum range of 400 to 830 MeV/c. The knocked-out proton was detected in coincidence with a proton or neutron recoiling almost back to back to the missing momentum, leaving the residual A = 2 system at low excitation energy. These data were used to identify two-nucleon short-range correlated pairs and to deduce their isospin structure as a function of missing momentum, in a region where the nucleon-nucleon (N N ) force is expected to change from predominantly tensor to repulsive. The abundance of neutron-proton pairs is reduced as the nucleon momentum increases beyond ∼500 MeV/c. The extracted fraction of proton-proton pairs is small and almost independent of the missing momentum. Our data are compared with calculations of two-nucleon momentum distributions in 4 He and discussed in the context of probing the elusive repulsive N N force.
Smoothed particle hydrodynamics (SPH) is aLagrangian method based on a meshless discretization of partial differential equations. In this review, we present SPH discretization of the Navier-Stokes and advection-diffusionreaction equations, implementation of various boundary conditions, and time integration of the SPH equations, and we discuss applications of the SPH method for modeling pore-scale multiphase flows and reactive transport in porous and fractured media.
In addition to the well-known positive space charge, electron irradiation of MOS capacitors with 25-keV electrons is shown to introduce additional uncharged electron traps into the oxide layer. These traps persist after most of the positively charged defects have been removed by the usual low-temperature (~ 0c) anneals. Their presence after this anneal is determined by injecting hot electrons into the oxide where they are captured by existing defects. The effective trap densities increase with increasing electron fluence and are reduced by forming-gas anneals at temperatures in excess of 500°C. Observed electron-capture cross sections are between 10-15 and 10-18 cm 2 • The residual radiation damage in oxides exposed to 10-4 Ccm-2 of 25-keV electrons and subsequently annealed at 4OQ°C results in an additional neutral density of 5 X 1011 trapscm-2 with cross sections distributed over the above range. Electron-trapping cross sections and effective trap densities associated with this damage are found to be identical at 77 and 295 K. The traps are possibly associated with dipolar defects formed when valence electrons localize around an ion after the bonds are broken.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.