This paper outlines a reliable strategy to approximate the local stable manifold near a hyperbolic equilibrium point for nonlinear systems of differential equations of fractional order. Furthermore, the local behavior of these systems near a hyperbolic equilibrium point is investigated based on the fractional Hartman-Grobman theorem. The fractional derivative is described in the Caputo sense. The solution existence, uniqueness, stability and convergence of the proposed scheme is discussed. Finally, the validity and applicability of our approach is examined with the use of a solvable model method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.