This paper presents an ultra-low-power boost converter for self-powered IoT applications to self-start and power-up IoT devices from scratch without any requirement of an external start-up. The proposed converter and its clock generator operate in sub-threshold utilizing bulk-driven technique for low-power operation. The bulk-driven technique improves charge transfer switches for effective switching using auxiliary transistors. This approach enables a MOSFET to operate on supplies lower than its threshold voltage with a significant reduction in the reverse charge transfer and switching loss while increasing the voltage conversion efficiency and output voltage. To validate the performance of the proposed architecture, the post-layout simulation is carried out in standard CMOS 0.18[Formula: see text][Formula: see text]m technology. Under low-voltage supply of 0.4[Formula: see text]V, the simulated transient output voltage takes 110[Formula: see text][Formula: see text]s to reach 1.92[Formula: see text]V with 0.15[Formula: see text] output voltage ripple, while consuming the power of 772[Formula: see text]nW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.