Single tracks and pairs of tracks were written into undoped and Nd-doped YAG crystals using a commercial femtosecond laser system delivering pulses with pulse duration of 140 fs and pulse energies up to 10 mu J. The pulses were focused by a 50x microscope objective below the surface of the crystals. Due to the elasto-optical effect, stress-induced birefringence was observed in domains surrounding the single tracks and between the pairs of tracks. Waveguiding was demonstrated in certain channels in these domains. To investigate the underlying guiding mechanism highly selective chemical etching of the modified material was performed with etching rates up to 5 mu m/h. Pumped at 808 nm, laser operation at a wavelength of 1064 nm was achieved. The maximum output power was 25.5 mW at 261 mW of launched pump power with a slope efficiency of 23%
We present an experimental study on the drilling of metal targets with ultrashort laser pulses at high repetition rates (from 50 kHz up to 975 kHz) and high average powers (up to 68 Watts), using an ytterbium-doped fiber CPA system. The number of pulses to drill through steel and copper sheets with thicknesses up to 1 mm have been measured as a function of the repetition rate and the pulse energy. Two distinctive effects, influencing the drilling efficiency at high repetition rates, have been experimentally found and studied: particle shielding and heat accumulation. While the shielding of subsequent pulses due to the ejected particles leads to a reduced ablation efficiency, this effect is counteracted by heat accumulation. The experimental data are in good qualitative agreement with simulations of the heat accumulation effect and previous studies on the particle emission. However, for materials with a high thermal conductivity as copper, both effects are negligible for the investigated processing parameters. Therefore, the full power of the fiber CPA system can be exploited, which allows to trepan high-quality holes in 0.5mm-thick copper samples with breakthrough times as low as 75 ms.
Applications in life sciences and information technology require all-optical solutions. In the inevitable race towards miniaturized optical circuits, all-integrated solutions will prevail against bulk setups. Because of its outstanding nonlinear properties, lithium niobate (LiNbO3) emerged as the key platform for integrated optics. In this paper, we discuss the direct femtosecond (fs) laser inscription technique whose flexibility enables the realization of two- and three-dimensional embedded optical waveguides in various optical materials. Linear and nonlinear components for monolithic and hybrid waveguide devices are characterized and their perspectives are reviewed, e.g. couplers, Bragg reflectors, frequency converters, amplitude modulators and gain modules. Finally, we demonstrate a monolithic LiNbO3 waveguide chip that combines a frequency doubling and a modulating unit. Thumbnail image of Schematic of a hybrid fs laser written chip that comprises a rare-earth-doped laser section (a), a frequency doubling unit (b), Bragg reflectors (c), waveguide splitters (d) and an amplitude modulator (e)
A high-power optically pumped semiconductor laser operating around 970 nm has been used as a pumping source for an upconversion laser based on an Er3+ doped LiLuF4 crystal. Nearly 0.5 W of continuous wave (cw) output power and 0.8 W peak power at a 50% pump duty cycle could be achieved at a wavelength of 552 nm. This represents the highest output power from a room temperature upconversion laser ever reported. Laser threshold and slope efficiency were measured to be below 100 mW of absorbed pump power and 30%, respectively. This experiment could be an important step along the route to realizing a compact and efficient upconversion laser emitting in the Watt level power regime.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.