The study of scattering and extinction properties of possible nanodiamond grains in the ISM are reported. Calculations using Discrete Dipole Approximation (DDA) for varying ellipsoidal shapes and sizes from 2.5 to $10 nm$ are considered. Nanodiamonds show negligible extinction from IR to near-UV and very sharp far-UV rise. Comparison with observations rule out possibility of independent nanodiamond dust but point towards possibility of nanodiamonds as a component in the ISM. Radiation induced transformations may lead to carbonaceous grains with different core and mantles. So calculations are also performed for a core-mantle target model with nanodiamond core in graphite mantles. The graphite extinction features get modified with the peak at 2175 \AA{} being lowered, broadened, blue shifted and accompanied by enhanced extinction in the far-UV. Such variations in the 2175 \AA{} band and simultaneous far-UV rise are observed along some sources. A three component dust model incorporating silicate, graphite and graphite with nanodiamond core is also considered. The model extinction compares very well with the average galactic extinction in the complete range from 0.2 to $10 \mu m^{-1}$. The best fit requires small size and small number of nanodiamonds.Comment: Accepted for publication in MNRAS; 8 Figure
The modelling of extinction along anomalous/non‐Cardelli, Clayton & Mathis sightlines, which are characterized by a broad 217.5‐nm bump and steep far‐ultraviolet (FUV) rise, is reported. The extinction along these sightlines, namely HD 210121, HD 204827, HD 29647 and HD 62542, is difficult to reproduce using standard silicate and graphite grains. A very good match with the observed extinction is obtained by considering a nanodiamond component as part of the carbonaceous matter. Most of these sightlines are rich in carbon and are invariably backed by a young hot stellar object. Nanodiamond is taken as a core within amorphous carbon and graphite. These core–mantle particles, taken as additional components along with graphite and silicates, lead to a reduction in the silicate requirement. The abundance of carbonaceous matter is not affected, as a very small fraction of nanodiamond is required. Extinction along sightlines that show steep FUV is also reported, demonstrating the importance of the nanodiamond component in all such regions.
Nowadays, emerging noise pollution by external factors causes harmful diseases in human beings. The development of a bio-based filler or panel will help to eliminate some unwanted noise in working places and living rooms. This work aimed to develop an ecowaste fiber (leftover after harvesting)-based sound absorber and analyze its capabilities for sound absorption. The ecowaste fibers are collected by the gleaning process, i.e., the process of collecting leftovers from fields. The sound absorption capabilities of three natural fibers extracted from Eleusine coracana (Finger millet) straw, Desmostachya bipinnata (Darbha), and Typha domingensis (Ripe bulrush) plants are investigated in this study, both individually and in hybrid combinations. The sound absorption property mainly depends on factors such as porosity, flow resistivity, thickness, density, and tortuosity. Fiber length and fiber type play a significant role when fibers are arranged individually or in hybrid combinations. The stacking effect on the sound absorption coefficient of hybridized fiber arrangement was experimentally analyzed. The sound absorption coefficient (α) was found to be lower in the range of 1000 Hz–2500 Hz for all the combinations. As a homogenous fiber arrangement, the darbha fiber exhibited the better NRC (noise reduction coefficient) of 0.86 for 50 mm thickness among three different fibers and as a hybrid composition, ripe bulrush and darbha fibers exhibited NRC of 0.90 which is more capable of absorbing sound in the critical frequency range of 500 to 2000 Hz. These types of natural fiber fillers are highly capable of better sound absorbing and used in the applications such as classrooms, sound recording rooms, and theatres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.