Schiff's bases constitute a class of pharmaceutical and medicinally important molecules. The conventional methods for the synthesis of Schiff's bases require long reaction times and use of organic solvents. We report a novel and eco-friendly condensation reaction method permitting the ''green synthesis'' of various Schiff's bases by stirring 1,2-diaminobenzene with various aromatic aldehydes in water as solvent. This method is experimentally simple, clean, high yielding, green, and with reduced reaction times. The product is purified by simple filtration followed by washing with water and drying processes.
Polyethyleneglycol bound sulfonic acid (PEG-OSO3H), a chlorosulphonic acid-modified polyethylene glycol was successfully used as an efficient and eco-friendly polymeric catalyst in the synthesis of 14-aryl/heteroaryl-14H-dibenzo[a,j]xanthenes obtained from the reaction of 2-naphthol and carbonyl compounds under solvent-free conditions with short reaction times and excellent yields. The biological properties of these synthesized title compounds revealed that compounds 3b, 3c, 3f and 3i showed highly significant anti-viral activity against tobacco mosaic virus.
Sensorial analysis of pineapple breads (conventionally baked, Cpb; fully baked frozen, Fpb and partially baked, Ppb) showed no significant differences in terms of aroma and taste. On the contrary, the scores for the overall quality between the partially baked and conventionally baked breads showed significant (p < 0.05) differences. At the same time, headspace analysis using a solid-phase microextraction (SPME) method identified 59 volatile compounds. The results of the aroma extracts dilution analysis (AEDA) revealed 19 most odour-active compounds with FD factors in the range of 32–128 as the key odourants of the pineapple breads. Further analysis of the similarities and differences between the pineapple breads in terms of the key odourants were carried out by the application of PLS-DA and PLS-regression coefficients. Results showed that Ppb exhibited strong positive correlations with most of the volatile- and non-volatile compounds, while the Cpb showed significant positive correlations with hexanal and 4-hydroxy-2,5-dimethyl-3(2H)-furanone, and the Fpb had strong positive correlations with lactic acid, benzoic acid, benzaldehyde and ethyl propanoate.
A series of α-hydroxyphosphonates were synthesized from the reaction of aldehyde (1) with triethylphosphite (2) in the presence of oxone and evaluated for their antioxidant properties against lipid peroxidation, reduced glutathione, superoxide dismutase, and catalase. The majority of the compounds showed promising antioxidant activity. Diethyl anthracen-9-yl (hydroxy) methylphosphonate (3n) is the most potent and biologically active compound against free radicals.
Synthesis of 1-substituted-1,3,2-diazaphosphole 1-oxides (3a-l) were accomplished via a two-step process. It involves the preparation of diazaphospholo 1-oxide monochloride intermediate (2) and its subsequent reaction with phenols/amino acid esters in dry THF in the presence of triethylamine at 40-45°C. The structures of newly synthesized compounds were characterized by spectral and elemental analysis. The title compounds were evaluated for their in-vitro antioxidant properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.