Cathepsin D is a ubiquitously expressed lysosomal protease that is involved in proteolytic degradation, cell invasion, and apoptosis. In mice and sheep, cathepsin D deficiency is known to cause a fatal neurodegenerative disease. Here, we report a novel disorder in a child with early blindness and progressive psychomotor disability. Two missense mutations in the CTSD gene, F229I and W383C, were identified and were found to cause markedly reduced proteolytic activity and a diminished amount of cathepsin D in patient fibroblasts. Expression of cathepsin D mutants in cathepsin D(-/-) mouse fibroblasts revealed disturbed posttranslational processing and intracellular targeting for W383C and diminished maximal enzyme velocity for F229I. The structural effects of cathepsin D mutants were estimated by computer modeling, which suggested larger structural alterations for W383C than for F229I. Our studies broaden the group of human neurodegenerative disorders and add new insight into the cellular functions of human cathepsin D.
The neuronal ceroid lipofuscinoses (NCLs) are a group of inherited lysosomal storage diseases and the prototype of childhood onset neurodegenerative disorders. To date, 10 NCL entities (CLN1-CLN10) are known and characterized by accumulation of autofluorescent storage material, age of onset and clinical symptoms. CLN8 was first identified as the causative gene for a late-onset form with progressive epilepsy and mental retardation in Finnish patients. In addition, CLN8 phenotypes were described in Turkish, Israeli and Italian patients with a more rapid progression of visual loss, epilepsy, ataxia and mental decline. Here, we report the first mutations in German (c.611G>T) and Pakistani (c.709G>A) patients. Our findings confirm previous assumptions that the CLN8 variant can occur in many ethnic groups. So far, large CLN gene deletions are only known for the CLN3 gene. Here, we also describe a novel, large CLN8 gene deletion c.544-2566_590del2613 in a Turkish family with a slightly more severe phenotype. Our data indicate that patients with clinical signs of late infantile NCL and characteristic ultrastructural inclusions should also be screened for CLN8 mutations independent of their ethnic origin.
Our observation represents only the second patient of PMG in FAS and confirms the phenotypic variability of cerebral malformations associated with maternal alcohol abuse during pregnancy. In patients with clinical features of FAS and neurologic deficits or seizures neuroimaging is recommended. Furthermore, FAS should be considered as a differential diagnosis for PMG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.