Mount Michael stratovolcano, South Sandwich Islands is extremely remote and challenging to observe, but eruptive activity has been sporadically observed since 1820 and captured by satellite methods since 1989. We identify long‐range infrasound signals recorded by the International Monitoring System attributable to episodes of persistent eruptive activity at Mount Michael. Analysis of multi‐year (2004–2020) infrasound array data at station IS27, Antarctica (range 1,672 km) reveals candidate signals especially from May 2005 to January 2008 and from May 2016 to April 2018. By combining ray‐tracing with empirical climatologies and atmospheric specifications, we show that systematic variations in the observed backazimuth of the signals (at IS27) are broadly consistent with annual variability in stratospheric propagation conditions for a source at Mount Michael. Observed signal amplitudes combined with transmission loss estimates are consistent with moderate explosive eruption. We highlight a selection of infrasound signals that correspond to satellite observation of eruptions.
A climactic eruption phase on December 22, 2018, triggered the collapse of the southwest flank and summit of Anak Krakatau stratovolcano, generating a tsunami which struck the coastlines of Sumatra and Java. We employ a selection of remote moored hydroacoustic (H08S, 3307 km; H01W, 3720 km) and infrasonic (IS06, 1156 km; IS07, 3475 km; IS52, 3638 km) stations of the International Monitoring System (IMS) to investigate eruptive activity preceding, during, and after the climactic eruption phase. We observe 6 months of co-eruptive intermittent infrasound at IS06 and powerful infrasound from the climactic eruption on IS06 and IS52. The climactic eruption phase was not detected hydroacoustically, but we observe a ~ 12-day swarm of hydroacoustic signals beginning 24 days before the flank collapse event that we attribute to sustained submarine eruptive activity at Anak Krakatau. We perform hydroacoustic waveform and envelope multiplet analysis to assess event similarity during the hydroacoustic swarm. Hydroacoustic waveforms are not well-correlated, but envelopes with a main pulse duration of ~ 20-s are correlated, with 88.7% of 247 events grouping into two multiplets using a threshold correlation coefficient of 0.75. The repetitive envelopes indicate a repetitive impulsive volcanic process, either underwater submarine explosions or volcanic earthquakes in the solid Earth coupled to the water column from the Sunda Shelf. This study further underscores the potential of remote acoustic technology for detecting and characterizing eruptions at submarine or partially submerged volcanoes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.