Semi-analytical solutions for the diffusive Lotka-Volterra predator-prey system with delay are considered in one and two-dimensional domains. The Galerkin method is applied, which approximates the spatial structure of both the predator and prey populations. This approach is used to obtain a lower-order, ordinary differential delay equation model for the system of governing delay partial differential equations. Steady-state and transient solutions and the region of parameter space, in which Hopf bifurcations occur, are all found. In some cases simple linear expressions are found as approximations, to describe steady-state solutions and the Hopf parameter regions. An asymptotic analysis for the periodic solution near the Hopf bifurcation point is performed for the one-dimensional domain. An excellent agreement is shown in comparisons between semianalytical and numerical solutions of the governing equations. The diffusive Lotka-Volterra predator-prey system with delay Abstract. Semi-analytical solutions for the diffusive Lotka-Volterra predator-prey system with delay are considered in one and two-dimensional domains. The Galerkin method is applied, which approximates the spatial structure of both the predator and prey populations. This approach is used to obtain a lower-order, ordinary differential delay equation model for the system of governing delay partial differential equations. Steady-state and transient solutions and the region of parameter space, in which Hopf bifurcations occur, are all found. In some cases simple linear expressions are found as approximations, to describe steady-state solutions and the Hopf parameter regions. An asymptotic analysis for the periodic solution near the Hopf bifurcation point is performed for the one-dimensional domain. An excellent agreement is shown in comparisons between semi-analytical and numerical solutions of the governing equations.
Semi-analytical solutions for the reversible Selkov, or glycolytic oscillations model, are considered. The model is coupled with feedback at the boundary and considered in one-dimensional reaction-diffusion cell. This experimentally feasible scenario is analogous to feedback scenarios in a continuously stirred tank reactor. The Galerkin method is applied, which approximates the spatial structure of both the reactant and autocatalyst concentrations. This approach is used to obtain a lower-order, ordinary differential equation model for the system of governing equations. Steady-state solutions, bifurcation diagrams and the region of parameter space, in which Hopf bifurcations occur, are all found. The effect of feedback strength and delay response on the parameter region in which oscillatory solutions occur, is examined. It is found that varying the strength of the feedback response can stabilize or destabilize the system while increasing the delay response usually destabilizes the reaction-diffusion cell. The semianalytical model is shown to be highly accurate, in comparison with numerical solutions of the governing equations.
This study provides semi-analytical solutions to the Selkov-Schnakenberg reaction-diffusion system. The Galerkin method is applied to approximate the system of partial differential equations by a system of ordinary differential equations. The steady states of the system and the limit cycle solutions are delineated using bifurcation diagram analysis. The influence of the diffusion coefficients as they change, on the system stability is examined. Near the Hopf bifurcation point, the asymptotic analysis is developed for the oscillatory solution. The semi-analytical model solutions agree accurately with the numerical results.
In this study, the dynamics of a diffusive Lotka–Volterra three-species system with delays were explored. By employing the Galerkin Method, which generates semi-analytical solutions, a partial differential equation system was approximated through mathematical modeling with delay differential equations. Steady-state curves and Hopf bifurcation maps were created and discussed in detail. The effects of the growth rate of prey and the mortality rate of the predator and top predator on the system’s stability were demonstrated. Increase in the growth rate of prey destabilised the system, whilst increase in the mortality rate of predator and top predator stabilised it. The increase in the growth rate of prey likely allowed the occurrence of chaotic solutions in the system. Additionally, the effects of hunting and maturation delays of the species were examined. Small delay responses stabilised the system, whilst great delays destabilised it. Moreover, the effects of the diffusion coefficients of the species were investigated. Alteration of the diffusion coefficients rendered the system permanent or extinct.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.