The full understanding of cellular functions requires information about protein numbers for various biomolecular assemblies and their dynamics, which can be partly accessed by super-resolution fluorescence microscopy. Yet, many protein assemblies and cellular structures remain below the accessible resolution on the order of tens of nanometers thereby evading direct observation of processes, like self-association or oligomerization, that are crucial for many cellular functions. Over the recent years, several approaches have been developed addressing concentrations and copy numbers of biomolecules in cellular samples for specific applications. This has been achieved by new labeling strategies and improved sample preparation as well as advancements in superresolution and single-molecule fluorescence microscopy. So far, none of the methods has reached a level of general and versatile usability due to individual advantages and limitations. In this article, important requirements of an ideal quantitative microscopy approach of general usability are outlined and discussed in the context of existing methods including sample preparation and labeling quality which are essential for the robustness and reliability of the methods and future applications in cell biology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.