The precise mechanisms that underlie acute changes in tissue water diffusion following cerebral ischemia or related insults such as glutamate exposure remain unexplained, but it has been suggested that these may be caused by cell swelling due to water uptake. This study was undertaken to compare the changes observed in diffusion-weighted MR images with changes in the cellular volume measured by electrical impedance in a model of N-methyl-D-aspartate-induced brain injury in perinatal rats. The results show that the temporal course of the intensity changes in the diffusion-weighted images parallelled the progressive shrinkage of the extracellular space measured from the electrical impedance. After administration of the N-methyl-D-aspartate antagonist MK-801 the signal enhancement in the images was reversed, which paralleled the normalization of the extracellular space observed by the impedance measurements. It was estimated that the extracellular space decreased from 24 to 12% while the apparent diffusion coefficient of water decreased from 0.89 x 10(-9) in normal tissue to 0.42 x 10(-9) m2/s in tissue exposed to N-methyl-D-aspartate. These data indicate that changes in tissue water diffusion are related to changes in cell volume.
The present study was undertaken to characterize the formation of ischemic brain edema using diffusion-weighted and T2-weighted magnetic resonance imaging in a rat model of focal ischemia. The extent of edema formation was measured from multislice diffusion-weighted and T2-weighted spin-echo images acquired at various times after ischemia. The spin-spin relaxation time (T2) and the apparent diffusion coefficient in normal and ischemic tissue were also determined. The results show that on the diffusion-weighted images the lesion was clearly visible at 30 minutes after ischemia, while on the T2-weighted images it became increasingly evident after 2-3 hours. On both types of images the hyperintense area increased in size over the first 48 hours. After 1 week the hyperintensity on the diffusion-weighted images rapidly disappeared and evolved as a hypointense lesion in the chronic phase. These results confirm the high sensitivity of diffusion-weighted MRI for the detection of early ischemia. The temporal course of the edema observed on T2W-images is in agreement with the reported increase of total water content occurring in this model. The increase of the lesion observed on the diffusion-weighted images during the first 2 days points to an aggravation of cytotoxic edema that parallels the changes in free water shown by the T2-weighted images. It is shown that the highly elevated T2's of the infarcted area several days after ischemia can substantially contaminate the diffusion-weighted images.
This article describes the use of non-invasive magnetic resonance (MR) methods for the characterization and monitoring of the pathophysiology of experimental brain injury in laboratory animals as a function of time and treatment. The impact of MR in brain research is primarily due to its non-invasive nature, thereby enabling repeated measurements in long-term studies, and due to the type of information that it provides. MR imaging (MRI) enables the measurement of the morphology/anatomy as well as the functional status of tissues under in vivo conditions. Compared to other in vivo imaging modalities, MRI has a high spatial resolution and allows for a remarkable soft tissue differentiation. MR spectroscopy (MRS) provides information on the biochemical/metabolic status of tissues. MR methods which have proven valuable in animal studies, can be readily translated to the clinical situation where MR-based diagnosis and treatment planning play a rapidly increasing role. After a short introduction into the principles of MR, we will illustrate the remarkable versatility of MR in research on brain injury from recent animal studies. Examples will be mainly drawn from experiments on early injury in focai cerebral ischemia and from research on mechanical brain trauma and excitotoxic lesions. The article ends with a brief description of the perspectives of MR in neuropsychiatry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.