This article presents the study of machinability of ZA43 alloy reinforced with silicon carbide particulate metal matrix composites. The specimen was fabricated through conventional liquid metallurgy technique. Silicon carbide with particle size of 60 mm with three different weight percentages (i.e. 5%, 10%, and 15%) was used for fabrication. Dry turning of composite specimens was carried out using uncoated and coated carbide indexible inserts on a conventional lathe. Comparisons of performance of each grade of the cutting tool were carried out in the experiment wherein 162 experiments were executed with the aim of determining surface roughness on the machined area of the composite and wear land on the flank portion of the cutting tool. The results were recorded and analyzed with a statistical analysis tool (analysis of variance) to identify the significant parameter influencing both surface roughness and flank wear. It was observed that cutting speed, feed, and depth of cut were the parameters affecting the surface finish and responsible for higher tool wear. The composition of the material also had substantial effect in deciding the surface roughness value and tool wear land.
The present paper reveals the wear behaviour of Zinc -Aluminium alloy reinforced with SiC particulate metal matrix composite. The composite is prepared using liquid metallurgy technique. The unlubricated pin-on disc wear test is conducted to find the wear behaviour of the ZA43 alloy based composite. The sliding wear test is conducted for different load, speed and time. The result reveals that wear rates of composite is reduced as reinforcement increases. For the same working conditions wear rate increases with increasing load and with increasing speed. The tested samples are examined by taking micro structure photos and analyzed for the type of wear. Dominating wear types observed are delamination and abrasion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.