A novel series of endothelin-A (ET(A)) selective receptor antagonists having a 2H-chromene skeleton are described. A lead compound, 2-(benzo[1,3]dioxol-5-yl)-2H-chromene-3-carboxylic acid (3), was found by modifications of our own angiotensin II antagonist. A structure-activity relationship (SAR) study of 3 reveals that the structural requirements essential for potent and selective ET(A) receptor binding affinity are the m,p-methylenedioxyphenyl, carboxyl, and isopropoxy groups at the 2-, 3-, and 6-positions, respectively, on the (R)-2H-chromene skeleton. The substituent at the 4-position is also important for improving the activity, and various hydrophobic functional groups of 6-9 A such as liner, branched, and cyclic aliphatic groups, unsubstituted and substituted aryl groups, and even halogen atoms were acceptable. These results suggest that (R)-2-(benzo[1,3]dioxol-5-yl)-6-isopropoxy-2H-chromene-3-carboxylic acid, formula 108, is the crucial basic structure to be recognized by the ET(A) receptor. The most potent compound is (R)-48 (S-1255), which binds to the ET(A) receptor with an IC(50) value of 0.19 nM and is 630-fold selective for the ET(A) receptor than for the ET(B) receptor. This compound has 55% oral bioavailability in rats. On the basis of the SAR, the roles of each substituent in the receptor binding are discussed.
Fast electrons generated in ultra-intense laser interaction with a solid target can produce multi-MeV ions from laser-induced plasmas. These fast ions can have different applications ranging from ion implantation to nuclear reactions. The most important parameter is the efficiency of fast ion production. An analytical model and particle-in-cell simulations were employed to examine acceleration mechanisms that can provide an optimal plasma density distribution due to a laser prepulse. We considered the acceleration of ions leaving a plasma layer with different density gradients, from a step-like overdense plasma to an underdense plasma with a smooth density gradient. The effects of the plasma initial scale length and density on the ion acceleration were analysed, and we found that the optimal case should have some plasma parameters. It is shown that overdense plasmas provide a higher density of accelerated ion energy than underdense plasmas at intensities below 10 19 W cm −2 .
Accumulation of amyloid β peptides (Aβ) is thought to be one of the causal factors of Alzheimer's disease (AD). The aspartyl protease β-site amyloid precursor protein cleaving enzyme 1 (BACE1) is the rate-limiting protease for Aβ production, and therefore, BACE1 inhibition is a promising therapeutic approach for the treatment of AD. Starting with a dihydro-1,3-thiazine-based lead, Compound J, we discovered atabecestat 1 (JNJ-54861911) as a centrally efficacious BACE1 inhibitor that was advanced into the EARLY Phase 2b/3 clinical trial for the treatment of preclinical AD patients. Compound 1 demonstrated robust and dose-dependent Aβ reduction and showed sufficient safety margins in preclinical models. The potential of reactive metabolite formation was evaluated in a covalent binding study to assess its irreversible binding to human hepatocytes. Unfortunately, the EARLY trial was discontinued due to significant elevation of liver enzymes, and subsequent analysis of the clinical outcomes showed dose-related cognitive worsening.
To assess reactive oxygen species (ROS) production by detecting the fluorescent oxidation product, hydroethidine has been used extensively. The present study was undertaken to evaluate the potential of the hydroethidine derivative as a radiotracer to measure in vivo brain ROS production. 3 H]Hydromethidine freely penetrated into the brain where it was rapidly converted to oxidized forms, which were trapped there in response to the production of ROS. Thus, [3 H]Hydromethidine should be useful as a radical trapping radiotracer in the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.