A novel series of endothelin-A (ET(A)) selective receptor antagonists having a 2H-chromene skeleton are described. A lead compound, 2-(benzo[1,3]dioxol-5-yl)-2H-chromene-3-carboxylic acid (3), was found by modifications of our own angiotensin II antagonist. A structure-activity relationship (SAR) study of 3 reveals that the structural requirements essential for potent and selective ET(A) receptor binding affinity are the m,p-methylenedioxyphenyl, carboxyl, and isopropoxy groups at the 2-, 3-, and 6-positions, respectively, on the (R)-2H-chromene skeleton. The substituent at the 4-position is also important for improving the activity, and various hydrophobic functional groups of 6-9 A such as liner, branched, and cyclic aliphatic groups, unsubstituted and substituted aryl groups, and even halogen atoms were acceptable. These results suggest that (R)-2-(benzo[1,3]dioxol-5-yl)-6-isopropoxy-2H-chromene-3-carboxylic acid, formula 108, is the crucial basic structure to be recognized by the ET(A) receptor. The most potent compound is (R)-48 (S-1255), which binds to the ET(A) receptor with an IC(50) value of 0.19 nM and is 630-fold selective for the ET(A) receptor than for the ET(B) receptor. This compound has 55% oral bioavailability in rats. On the basis of the SAR, the roles of each substituent in the receptor binding are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.